Bamboo as a Renewable Material for Sustainable Building Practices in Guatemala
Abstract
Bamboo is a fast-growing renewable resource with diverse applications in sustainable construction. Its ability to capture and sequester carbon, combined with its rapid regeneration cycle, positions it as an environmentally friendly material. However, its adoption faces challenges due to limited awareness of its viability as a safe structural material. In Guatemala, there are approximately 12,000 hectares of bamboo, with species such as Guaduaangustifolia, Dendrocalamus asper, and Gigantochloaverticillata, which exhibit mechanical properties suitable for construction. Some studies have shown that bamboo can absorb up to 54.3 tons of carbon during a six-year growth cycle, contributing to climate change mitigation. The physical and mechanical properties of bamboo vary by species. The three forest-managed species in Guatemala demonstrate good compressive and shear strength, although shear resistance is comparatively lower. In particular, the low shear strength of internode sections requires optimized structural designs. Nevertheless, its high tensile strength makes it ideal for structures subjected to bending. This article examines these aspects and highlights bamboo’s potential as a structural alternative in civil engineering and architecture, promoting its use in sustainable building practices and its integration into Guatemala’s construction regulations.
Downloads
References
Ahmad, Z., Upadhyay, A., Ding, Y., Emamverdian, A., &Shahzad, A. (2021). Bamboo: Origin, habitat, distributions and global prospective. In Biotechnological Advances in Bamboo (pp. 1–31). Springer. https://doi.org/10.1007/978-981-16-1310-4_1
Calo Rosales, N. E. (2018). Caracterización física y mecánica de tres especies de bambú aptas para la construcción en Guatemala (Licentiatethesis, Universidad de San Carlos de Guatemala). Repositorio Institucional de la Universidad de San Carlos.
CONADEA & GTA-BAMBÚ. (2022). Agrocadena del bambú de Guatemala: Plan estratégico 2022–2032. Guatemala: CONADEA & GTA-BAMBÚ.
Herrera, B. (2021). Diseño de puente peatonal utilizando bambú estructural bajo cargas de servicio requeridas por la Guía de Especificaciones para el Diseño de Puentes Peatonales de AASHTO (Licentiatethesis, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Ingeniería Civil).
Martínez, L. A., Cuéllar, Y., Páez, N. J., Pedraza, J. I., &Belálcazar-Cerón, L. C. (2018). Huella de carbono del ciclo de vida de plantaciones forestales comerciales (Eucalyptusgrandis, Pinuspatula) y forestal protectora (Guadua angustifolia Kunth) en Colombia. In International Workshop Advances in Cleaner Production, Barranquilla, Colombia.
Minke, G. (2012). Building with bamboo (2nd ed.). Birkhäuser.
Muscio, E. (2020). Geometría, estructura y nudo en la constitución de superficies de entramados espaciales con fibras de bambú (Doctoral thesis, Universidad Politécnica de Madrid). Retrievedfrom archivo digital UPM.
Poveda Montoya, W. A. (2011). Comparación del bambú con el acero como material de refuerzo a flexión en concreto (Undergraduategraduationproject, Instituto Tecnológico de Costa Rica, Escuela de Ingeniería en Construcción).
Red Internacional del Bambú y el Ratán (INBAR). (2014). Informe de síntesis de políticas: el bambú, un recurso estratégico para que los países reduzcan los efectos del cambio climático. INBAR.
Torres, B., Segarra, M., & Bragança, L. (2019). El bambú como alternativa de construcción sostenible. Extensionismo, innovación y transferencia tecnológica – claves para el desarrollo, 5, 389. https://doi.org/10.30972/eitt.503787
The authors and co-authors warrant that the article is their original work, does not infringe any copyright, and has not been published elsewhere. By submitting the article to GPH-International Journal of Social Science and Humanities Research, the authors agree that the journal has the right to retract or remove the article in case of proven ethical misconduct.