Generalization of h-Torsion and Curvature Structures in Generalized Recurrent Space of Third Order by Cartan Covariant Derivatives
Abstract
In this research, we explore the generalized h-Torsion and curvature structures in Finsler spaces, specifically within the framework of the generalized Uₕ-TRFₙ tensor field. By deriving various expressions for these tensors, we reveal the relationships between the generalized h-Torsion tensor and Cartan’s curvature tensor. This paper extends the generalized Uₕ-Trirecurrent Finsler space. Furthermore, we obtain some relationships among different curvature tensors by using Cartan’s connection parameter Γⁱₖₕ. The results contribute to the understanding of torsion and curvature in higher-order Finsler spaces and may provide insights into advanced differential geometry and its applications in theoretical physics.
Downloads
References
Ahmed F. A. & Abdallah A. A.: The conditions for various tensors to be generalized B-trirecurrent tensor, International Journal of Advanced Research in Science, Communication and Technology, 4(2), 511-517, (2024).
Al-Qashbari, A. M., Abdallah,A. A. & Ahmed, F. A.: A Study on the extensions and developments of generalized βK-recurrent Finsler space, International Journal of Advances in Applied Mathematics and Mechanics, 12(1), 38-45, (2024).
Al-Qashbari, A. M., Abdallah, A. A. & Ahmed, F. A.: On generalized birecurrent Finsler space of mixed covariant derivatives in Cartan sense, International Journal of Research Publication and Reviews, 5(8), 2834-2840, (2024).
Al-Qashbari, A. M., Abdallah,A. A. & Al-ssallal, F. A.: Recurrent Finsler structures with higher-order generalizations defined by special curvature tensors, International Journal of Advanced Research in Science, Communication and Technology, 4(1),68-75, (2024).
AL-Qashbari, A. M, Abdallah, A. A. & Nasr, K. S.: An extension of generalized U_(|h)-birecurrent Finsler space, International Journal of Mathematics and Statistics Invention,12(5), 21-25, (2024).
AL-Qashbari, A. M, Abdallah, A. A. & Nasr, K. S.: On generalized trirecurrent space by using Gh-covariant derivative in Finsler geometry, Journal of Mathematical Problems, Equations and Statistics, 6(1), 91-100, (2025).
Al-Qashbari, A. M., Saleh S. &Ismail, I.:On some relations of R-projective curvature tensor in recurrent Finsler space, Journal of Non-Linear Modeling and Analysis (JNMA), 6(4),1216-1227, (2024).
Bacso, S. & Matsumoto, M.: On Finsler space of Douglas type A generalization of the notion of Berwald Space Publ. Math. Debrecen, 51, 385-406,(1997).
Ghadle K. P., Navlekar A. A., Abdallah A. A. & Hardan B.: Important results of P - generalized Finsler space with Berwald connection of third order, Journal of Mathematical Problems, Equations and Statistics, 6(1), 19-27, (2025).
kumar, A., Shulka, H. S. & Tripathi, R. P.: On the existence of projective affine motion in a W-recurrentFinsler space, Tamkang J. of Math., 31(1), (2000).
Kim, B. &Parw, H.: On special Finsler space with common geodesies, Korean Math. Soc. 15(2), 314-338, (2000).
P. N. Pandey, S. Saxena& A. Goswani, On a generalized H-recurrent space, Journal of International Academy of Physical Science, 15, 201 – 211, (2011).
Rund, H.: The differential geometry of Finsler space, Springer Verlag Berlin-Göttingen-Heidelberg, (1959);2^ndedit. (in Russian), Nuka (Moscow), (1981).
Saleem, A.A. &Abdallah, A.A.: On U-recurrent Finsler space, University of Aden Journal of Natural and Applied Sciences, 28(1), 13-20, (2024).
Saleem A. A. & Abdallah A. A.: On generalized U_(|l)- recurrent Finsler space, SHU Journal for Humanities and Applied Sciences, 2(2), 260-270, (2024).
The authors and co-authors warrant that the article is their original work, does not infringe any copyright, and has not been published elsewhere. By submitting the article to GPH - International Journal of Mathematics, the authors agree that the journal has the right to retract or remove the article in case of proven ethical misconduct.