https://www.gphjournal.org/index.php/m/issue/feed GPH-International Journal of Mathematics 2025-04-13T07:46:13+00:00 Dr. EKEKE, JOHN NDUBUEZE drekekejohn@gmail.com Open Journal Systems <p style="font-family: 'Segoe UI', sans-serif; font-size: 16px; color: #333;"><strong>GPH-International Journal of Mathematics (e-ISSN&nbsp;<a href="https://portal.issn.org/resource/ISSN/3050-9629" target="_blank" rel="noopener">3050-9645</a>)</strong> is a peer-reviewed, open-access journal dedicated to advancing research in mathematics. The journal publishes original research articles, comprehensive reviews, and survey papers covering both pure and applied mathematics, including topics such as algebra, analysis, geometry, number theory, and mathematical modeling. It provides a global platform for mathematicians and researchers to share innovative ideas, foster interdisciplinary collaboration, and contribute to the advancement of mathematical knowledge.</p> https://www.gphjournal.org/index.php/m/article/view/1852 Numerical Solution of Fractional order Malaria Model via the Generalized Fractional Adams-Bashforth-Moulton Approach 2025-04-13T07:46:13+00:00 Augustine Nuhu noreplygphjournals@gmail.com David Omale noreplygphjournals@gmail.com William Atokolo noreplygphjournals@gmail.com Jeremiah Amos noreplygphjournals@gmail.com Godwin Onuche Acheneje noreplygphjournals@gmail.com Emmanuel Abah noreplygphjournals@gmail.com Emmanuel Abah noreplygphjournals@gmail.com Joseph Egbemhenghe noreplygphjournals@gmail.com Bolarinwa Bolaji noreplygphjournals@gmail.com <p>A fractional-order mathematical model studies the effects of contact rate and recovery rate on Malaria transmission dynamics as this paper investigates different epidemiological characteristics of malaria infection. We put forward conditions to ensure the model solution uniqueness and performs an endemic equilibrium stability assessment through Lyapunov function application. Numerical simulations running the fractional Adams–Bashforth–Moulton method reveal how fractional-order values together with model parameters affect malaria control and dynamics. Numerical surface and contour plots reveal that Malaria prevalence rises when both contact rates and recovery rate increase but the recovery rate enhances the population's resistance against the disease spread. Decreasing contact rate in the population results in lower prevalence rates of malaria in the population.</p> 2025-04-13T00:00:00+00:00 ##submission.copyrightStatement##