COMPARISON STUDY OF PHYTOCHEMICAL PROFILE, CYTOTOXICITY AND ANTIOXIDANT ACTIVITIES OF ARBUTUS PAVARII AND ROSMARINUS OFFICINALIS L., PLANTS

  • Ibrahim Fouad Biochemistry Department, Almarj Faculty of Medicine, University of Benghazi, Libya.
  • Awad F. Elsheikh Department of chemistry, school of basic science, Libyan Academy - Benghaz, Libya
  • Jebril Saad Elabidi Pediatric department, Faculty of Medicine, University of Benghazi, Libya.
  • Jebril Taher Department of chemistry, school of basic science, Libyan Academy - Benghaz, Libya
  • Idress Hamad Attitalla Department of Microbiology, Omar Al Mukhtar University, Libya
Keywords: ARBUTUS PAVARII AND ROSMARINUS OFFICINALIS L antioxidant; cytotoxicity; cell lines, phenolics; flavonoids

Abstract

Background: In Libya, arbutus and rosemary are used in traditional medicine to relieve pain and inflammation; however, the biological basis for these actions has not been fully studied.
Objective of the study: This study set out to characterize and examine the pharmacological characteristics of the phenolic and flavonoid chemicals found in the aerial sections of rosemary and Arbutus.
Material and methods: Arbutus pavarii and rosmarinus officinalis l., plants aerial parts were tested for antioxidant activity (DPPH), cell viability and cytotoxic effects. Phenolic and flavonoid contents (HPLC), and volatile constituents (GC-MS) were also characterized.

Results: The methanol extract of rosemary aerial parts had the highest antioxidant activity, while the methanolic extract of Arbutus aerial parts had the lowest. The antioxidant activity of the methanol extract of Rosemary increased from (32.12±1..74 %) at a concentration of 10 µg/mL to (98.47±0.81%) at a concentration of 1280 µg/mL. While the methanol extract Arbutus aerial parts increased from (30.12±1.75%) at a concentration of 10 µg/mL to (98.17±0.81%) at a concentration of 1280 µg/mL. MTT assay revealed that the methanol extract of Extract of Rosemary and Arbutus aerial parts had significant cytotoxic effects on the A549 and WI38 cell lines, respectively. MTT assay of methanol extract of Rosemery has cytotoxic effects higher than methanolic extract of Arbutus aerial parts. Rosmarinic and Caffeic were the most abundant phenolic acid, followed by p-coumaric, ferulic, syringic, and gallic acids, respectively in methanolic extract of rosemary, on the other hand, the Quercetin and Myricetin were the most abundant phenolic acid. GC-mass analysis showed that aerial parts of Rosemary were rich in Rosmarinic acid and the methanolic extract of Arbutus aerial parts was rich in Quercetin phynolic acid.

Conclusion: Based on the observed data, it can be stated that the antioxidant and cytotoxic activities of rosemary are greater than those of arbutus aerial parts. One potential source of readily available natural bioactive ingredients with potential health and therapeutic advantages is the methanolic extract of rosmarinus officinalis l and arbutus pavarii.

Downloads

Download data is not yet available.

References

1. Tripathi, L.; Tripathi, J.N. Role of biotechnology in medicinal plants. Trop. J. Pharm. Res. 2003, 2, 243–253.
2. Pandey, G.; Madhuri, S. Some medicinal plants as natural anticancer agents. Pharmacogn. Rev. 2009, 3, 259.

3. Zhang A, Sun H, 3- Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem. 2013;63:570–7. doi: 10.1016/j.ejmech.2012.12.062.

4. Gennari, C.; Castoldi, D.; Sharon, O. Natural products with taxol-like anti-tumor activity: Synthetic approaches to eleutherobin and dictyostatin. Pure Appl. Chem. 2007, 79, 173–180.

5. Soliman, A.S.; Samad, S.; Banerjee, M.; Chamberlain, R.M.; Robert, M.; Aziz, Z. Brief Continuing Medical Education (CME) Module Raises Knowledge of Developing Country Physicians International Electronic. J. Health Educ. 2006, 9, 31–41.

6. Murad, R. Breast cancer awareness in Pakistan. JBUMDC 2017, 7, 64–65.

7. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

8. Maxwell, S.R. Prospects for the use of antioxidant therapies. Drugs 1995, 49, 345–361.

9. Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381.

10. Warren, J.S. Interleukins and tumor necrosis factor in inflammation. Crit. Rev. Clin. Lab. Sci. 1990, 28, 37–59.

11. Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 2008, 9, 581–591.

12. Nipun, D.; Vijay, S.; Jaykumar, B.; Kirti, S.P.; Richard, L. Antitumor Activity of Dendrophthoe falcata against Ehrlich Ascites Carcinoma in Swiss Albino Mice. Pharm. Crop. 2011, 2, 1–7.

13. Valerio, F.; Mezzapesa, G.N.; Ghannouchi, A.; Mondelli, D.; Logrieco, A.F.; Perrino, E.V. Characterization and Antimicrobial Properties of Essential Oils from Four Wild Taxa of Lamiaceae Family Growing in Apulia. Agronomy 2021, 11, 1431.

14. Hussein, A.R.; El-Anssary, A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In Herbal Medicine; IntechOpen Limited: London, UK, 2019.
15. Greenwell, M.; Rahman, P.K. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112.

16. Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour. 2011, 1, 119–124.

17. Al-Fatimi, M. Ethnobotanical survey of medicinal plants in central Abyan governorate, Yemen. J. Ethnopharmacol. 2019, 241,
111973.
18-Stuart, John D.; Sawyer, John O. (2001). Trees and Shrubs of California. University of California Press. p. 150.

19-Quattrocchi, Umberto (2000). CRC World Dictionary of Plant Names. Vol. I: A–C. CRC Press. p. 182. ISBN 978-0-8493-2675-2. Arbutus L Ericaceae [...] Origins: [...] The old Latin name arbutus i for the wild strawberry-tree, Arbutus unedo L.; see Carl Linnaeus, Species Plantarum. 395. 1753 and Genera Plantarum. Ed. 5. 187. 1754.
20- Francis, Daniel (2000). The Encyclopedia of British Columbia (2nd ed.). Madeira Park, BC: Harbour Publishing. p. 20.
21- Romani, A.; Pinelli, P.; Cantini, C.; Cimato, A.; Heimler, D. Characterization of Violetto di Toscana, a typical Italian variety of
artichoke (Cynara scolymus L.). Food Chem. 2006, 95, 221–225.
22 Laaksonen, T.J.; Roos, V.H.; Labuza, T.P. Comparisons of the use of desiccators with or without vacuum for water sorption and glass transition studies. Int. J. Food Prop. 2002, 4, 545–563.

23-Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A. and Elaasser, M.M. (2015): Synthesis and Anticancer Activities of Thiazoles, 1,3-Thiazines, and Thiazolidine Using Chitosan-Grafted-Poly(vinylpyridine) as Basic Catalyst. Heterocycles; 91(6):1227-1243.

25-A. S. Abd-El-Aziz, E. G. El-Ghezlani, M. M. Elaasser, T. H. Afifi, R. M. Okasha (2020). First example of cationic cyclopentadienyliron based chromene complexes and polymers: synthesis, characterization, and biological applications. Journal of Inorganic and Organometallic Polymers and Materials 30:131–146; DOI:10.1007/s10904-019-01295-w.
26-Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A. and Elaasser, M.M. (2015): Synthesis and Anticancer Activities of Thiazoles, 1,3-Thiazines, and Thiazolidine Using Chitosan-Grafted-Poly(vinylpyridine) as Basic Catalyst. Heterocycles; 91(6):1227-1243.
27. Sokal, R.R. The principles and practice of statistics in biological research. Biometry 1995, 46, 451–554.
28-Grodzicka, M.; Pena-Gonzalez, C.E.; Ortega, P.; Michlewska, S.; Lozano, R.; Bryszewska, M.; Mata, F.J.D.I.; Ionov, M. Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activity. Sustain. Mater. Technol. 2022, 33,
29. Kfoury, M.; Geagea, C.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem. 2019, 278, 163–169. [CrossRef]
30. Raviadaran, R.; Ng, M.H.; Chandran, D.; Ooi, K.K.; Manickam, S. Stable W/O/W multiple nanoemulsion encapsulating natural tocotrienols and caffeic acid with cisplatin synergistically treated cancer cell lines (A549 and HEP G2), and reduced toxicity on normal cell line (HEK 293). Mater. Sci. Eng. C 2021, 121, 111808.
31. Tabakam, G.T.; Kodama, T.; Donfack, A.R.N.; Nguekeu, Y.M.M.; Nomin-Erdene, B.; Htoo, Z.P.; Do, K.M.; Ngouela, S.A.; Tene, M.; Morita, H.; et al. A new caffeic acid ester and a new ceramide from the roots of Eriosema glomeratum. Phytochem. Lett. 2021, 45, 82–87.
32. Salsabila, R.; Perdani, M.S.; Kitakawa, N.S.; Hermansyah, H. Production of methyl caffeate as an intermediate product to produce caffeic acid phenethyl ester by esterification using cation-exchange resin. Energy Rep. 2020, 6, 528–533. [CrossRef]
33. Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Bakhtiari Far, F.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021, 171, 105759
34-Ozcan, M. 2003. Antioxidant activity of rosemary, sage, and sumac extracts and their combinations on stability of natural peanut oil. Journal of Medical Food. 6:267–270.
35-Gimenez, B., Roncales, P. and Beltran, J.A. 2004. The effects of natural antioxidants and lighting
conditions on the quality characteristics of gilt-head sea bream fillets (Sparus aurata) packaged in a modified atmosphere. Journal of the Science of Food and Agriculture. 84: 1053–1060.
36-Cadun A., Kisla, D. and Cakli S. 2008. Marination of deep water pink shrimp with rosemary extract and the determination of its shelf-life. Food Chemistry.109: 81–87.
37-Tironi, V. A., Tomas, M.C. and Anon, M. C. 2010. Quality loss during the frozen storage of sea salmon (Pseudopercis semifasciata). Effect of rosemary (Rosmarinus officinalis L.) extract. LWT Food Science and Techology. 43: 363-372.

38-Huang, W.; Kong, L.; Cao, Y.; Yan, L. Identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine: A review. Molecules 2021, 27, 215

39. Pandey, P.; Khan, F.; Qari, H.A.; Oves, M. Rutin (Bioflavonoid) as cell signaling pathway modulator: Prospects in treatment and chemoprevention. Pharmaceuticals 2021, 14, 1069.

40- Bao, X.; Li, W.; Jia, R.; Meng, D.; Zhang, H.; Xia, L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol. Rep. 2023, 75, 891–906.

41-Kim, D.K.; Lee, K.T.; Baek, N.-I.; Kim, S.-H.; Park, H.W.; Lim, J.P.; Shin, T.Y.; Eom, D.O.; Yang, J.H.; Eun, J.Acetylcholinesteras inhibitors from the aerial parts of Corydalis speciosa. Arch. Pharmacal Res. 2004, 27, 1127–1131.

42-Kim, S.R.; Hwang, S.Y.; Jang, Y.P.; Park, M.J.; Markelonis, G.J.; Oh, T.H.; Kim, Y.C. Protopine from Corydalis ternata has
anticholinesterase and antiamnesic activities. Planta Medica 1999, 65, 218–221. [CrossRef] [PubMed]

43- Z. A. Zakaria, A. M. Mohamed, N. S. Mohd. Jamil, M. S. Rofiee, M. N. Somchit, A. Zuraini, A. K. Arifah, M. R. Sulaiman, Afr. J. Biotechnol 2011, 10(2), 273-282.

44- Meng, Y.; Su, A.; Yuan, S.; Zhao, H.; Tan, S.; Hu, C.; Deng, H.; Guo, Y. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase. Plant Foods Hum. Nutr. 2016, 71, 444–449.

45-Hanan M. El-Basir, Sami G. Alsabri1, Nouri B. Rmeli, Salah B. Mohamed, Aemen A. Allafi, Abdulmottaleb A. Zetrini, Asma A. Salem1, Sofian S. Mohamed, Abdul Gbaj and Mokhtar M. El-Baseir, (2013). Phytochemical screening, antioxidant, antimicrobial and anti-proliferative activities study of Arbutus pavarii plant. Journal of Chemical and Pharmaceutical Research, 2013, 5(1):32-36.
46-H. Edeoga, D. Okwu, B. Mbaebie, Afr J Biotechnol 2005, 4, 685-688.
47- H. E., in Vegetable Tannins (Ed.: H. E), Cambridge University Press, Cambridge, pp. 15-89.

48 K. Chung, T. Wong, Y. Wei, Y. Huang, Y. Lin, Crit Rev Food Sci Nutr 1998, 8, 421-464.

49-Fitouri, Mousa I. Jaeda,, A. H. a. A. M. G. Ibrahim A. Mrema, Journal of Chemical and Pharmaceutical Research 2012, 4(9), 4201-4205.

52-Kocanci, F.; Hamamcioglu, B.; Aslım, B. The anti-AChE and anti-proliferative ctivities of Glaucium acutidentatum and Glaucium corniculatum Alkaloid Extracts. J. Appl. Pharm. Sci. 2017, 7, 191–200.

53-Geran, R.S.; Greenberg, N.H.; Macdonald, M.M.; Schumacher, A.M.; Abbott, B.J. Protocols for Screening Chemical Agents and Natural Products against Animal Tumors and Other Biological Systems. Cancer Chemother. Rep. 1972, 13, 1–87.

54. Canga, I.; Vita, P.; Oliveira, A.I.; Castro, M.A.; Pinho, C. In Vitro Cytotoxic Activity of African Plants: A Review. Molecules 2022, 27, 4989.

55- Suffness, M.; Pezzuto, J.M.; Hostettmann, K. Methods in plant biochemistry: Assays for bioactivity. In Methods in Plant Biochemistry, 6th ed.; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 33–71.

56. Campoccia, D.; Ravaioli, S.; Santi, S.; Mariani, V.; Santarcangelo, C.; De Filippis, A.; Montanaro, L.; Arciola, C.R.; Daglia, M.Exploring the anticancer effects of standardized extracts of poplar-type propolis: In vitro cytotoxicity toward cancer and normal cell lines. Biomed. Pharmacother. 2021, 141, 111895.

57. Chandan, P.; Dev, A.; Ezhilarasan, D.; Harini, K.S.; Panigrahi, C.; Arora, D.; Devaraj, E.; Karthik, S.H. Boldine Treatment Induces Cytotoxicity in Human Colorectal Carcinoma and Osteosarcoma Cells. Cureus 2023, 15, e48126.

58-.Zhou, Q.; Zhang, Q.; Liao, L.; Li, Q.; Qu, H.;Wang, X.; Zhou, Y.; Zhang, G.; Sun, M.; Zhang, K. Isocorydine Exerts Anticancer Activity by Disrupting the Energy Metabolism and Filamentous Actin Structures of Oral Squamous Carcinoma Cells. Curr. Issues Mol. Biol. 2024, 46, 650–662.

59-Konda, Y.; Imai, Y.; Hojo, H.; Endo, T.; Nozoe, S. Suppression of tumor cell growth and mitogen response by aporphine alkaloids, dicentrine, glaucine, corydine, and apomorphine. J. Pharmacobio-Dyn. 1990, 13, 426–431.

60-Abouzaid, O.A.R.; Mansour, S.Z.; Sabbah, F. Evaluation of the antitumor activity of olenostemma argel in the treatment of lung carcinoma induced in rats. Benha Vet. Med. J. 2018, 35, 178–189.

61- Hanafi, N.; Mansour, S.Z. Antitumor efficacy of Solenostemma argel and or irradiation against Ehrlich carcinoma. J. Biol. Sci. 2010, 10, 468–479.

62- Elsanhoty, R.M.; Soliman, M.S.M.; Khidr, Y.A.; Hassan, G.O.O.; Hassan, A.R.A.; Aladhadh, M.;
Abdella, A. Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds
in Solenostemma argel Extract. Molecules 2022, 27, 8118. https://doi.org/10.3390/molecules272381.

63-Ibrahim Fouad, Mohamed A. El-Raey , Mohamed F. Madi , Sabah H. Lamlom , Mohamed Ahmida , Eman S. Mostafa , Mansour Sobeh , Michael Wink , Awad M. Alhasnony , Idress Hamad Attitalla , Ahmad A. Mahdi: (2019). Comparison of phenolic profile, cytotoxicity and antioxidant activities of rosmarinus officinalis l. Stem collected from Egypt and libya. Asian Journal of Research in Biological and Pharmaceutical Sciences. 7(4), 2019, 113-122.

64-Ibrahim Fouad1, , Mohamed Ahmida1 , A. Elbrghathi1 , M. Madi1 , E. E. Ibrahim2 , I.M. khadra (2018). Evaluation of Volatile Composition, Antitumor and Antioxidant Activities of Libyan Sonchus oleraceus.International Journal of Advanced Research in Botany Volume 4, Issue 2, 2018, PP 8-13

65-I. Fouad, M. Ahmida, A. Elbrghath, M. Madi , M. El Raey, A. Elmabsout1 , I.M. Khadra.(2018). Phytochemical and Biological Investigation of Sonchus tenerrimus Growing in Libya International Journal of Advanced Research in Botany Volume 4, Issue 2, PP 20-24
Published
2024-10-15
How to Cite
Fouad, I., Elsheikh, A. F., Saad Elabidi, J., Taher, J., & Hamad Attitalla, I. (2024). COMPARISON STUDY OF PHYTOCHEMICAL PROFILE, CYTOTOXICITY AND ANTIOXIDANT ACTIVITIES OF ARBUTUS PAVARII AND ROSMARINUS OFFICINALIS L., PLANTS. GPH-International Journal of Applied Science, 7(09), 01-22. https://doi.org/10.5281/zenodo.13933130