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A B S T R A C T 

The infinite Geometric Series is a series of the form  
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Let t be sequence in (0,1) that converges to 1. The   matrix based on second derivative of 

convergent infinite geometric series defined as  
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k
. We denote this matrix by S t  and name it the matrix associated 

second derivative of geometric series. S t is a sequence to sequence mapping. When a matrix S t is 

applied to a sequence x, we get a new sequence S t 𝑥 whose nth term is given by: 
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The sequence S t 𝑥is called the S t -transform of the sequence x. 

The purpose of this research is to investigate the effect of applying S t to convergent sequences, 

bounded sequences, divergent sequences, and absolutely convergent sequences. We considering 

and answer the following interesting main research questions. 

 
K E Y W O R D S 

Fibonacci numbers, Fibonacci sequences, Pascal’s triangle, and Golden ratio. 
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Research Questions 

(1) What is the domain of t for which S t maps convergent sequence into convergent sequence? 

(2) What is the domain of t for which the S t maps absolutely convergent sequence into absolutely convergent 

sequence? 

(3) Does S t maps unbounded sequence to convergent sequence? 

(4) Does S t maps divergent sequence to convergent sequence? 

(5) How is the strength of the S t comparing to the identity matrix? 

Notations and Background Materials 

w= {the set of all complex sequences} 

c= {the set of all convergent complex sequences} 

)(Ac ={y: Ayc} 

l = {y: ∑ |𝑦𝑘|∞
𝑘=0 < ∞} 

)(Al ={y: Ay l } 

Definition 1: A matrix A is an x-y matrix if the image Au of u under the transformation A is in Y wherever u is 

in x. 

Regular Matrix 

A matrix is regular if 𝑙𝑖𝑚𝑛⟶∞𝑍𝑛= a⇒ 𝑙𝑖𝑚𝑛⟶∞(𝐴𝑋)𝑛=a. That is a sequence Z is convergent to A⇒ the A-

transform of Z also converses to a. 

The Sliverman-Toeplitz Rule 

We state the following famous Sliverman-Toeplitz Rule as Proposition I  with out proof and apply it. 

Proposition I: A matrix A = (an,k )  is regular if and only if  
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The Main Results 

Theorem 1: The S t matrix is a regular matrix for all t. 

Proof: We use proposition 1, to prove the theorem. Note that 
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Hence by Proposition I, the matrix 𝑆𝑡  is a regular matrix. Thus the matrix S t  maps all convergent sequences 

into convergent sequences and we can say that the matrix 𝑆𝑡  a c-c matrix. 

 

Remark 1:The S t matrix maps a bounded sequence into a convergent sequence as shown by the following 

example. This shows that the S t  matrix is stronger than the identity matrix or c(S t ) is larger than c. 

Example1:  Consider the bounded sequence given by xk = (-1)k  
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Remark 2:   The tS  matrix maps also   a divergent sequence x into a convergent sequence as shown by the 

following example. 

Example 2: Consider the unbounded sequence given by  x defined by 
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Knopp-LorentzThorem 

The Matrix A is an -  matrix if and only if there exists a number M > 0  such that for every 

k,  

n=0

¥

S ank £M.
 

Theorem 2: tS
is - Û  3)1( t

 

12



The Fascinating Mathematical Beauty of the Special Matrix based on Infinite Convergent Geometric Series   

©2021 Published by GLOBAL PUBLICATION HOUSE |International Journal of Mathematics| 

 

 

Lemma 1: 

tS
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 . 

Proof: We use the Knopp-Lorentz Rule. 
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 Now Theorem 2 follows by Lemmas 1&2. 

Corollary 1. arcsin(1−t)
2

∈  l   S t is an l-l matrix. 

Proof: The corollary easily follows using Theorem 2 and the following basic inequality. 
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Proof. Note that: 
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Remark 3. An  l-l 𝑆𝑡  matrix maps a bounded sequence into l  as shown by the following example. This shows 

that the𝑆𝑡  matrix is stronger than the identity matrix in the l-l setting or l(𝑆 t ) is larger than l. 

Example 3. 

 Assume the  𝑆𝑡matrix is l-l and consider the bounded sequence given by xk = (-1)k  
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Remark 4: An l-l 𝑆𝑡  matrix   maps unbounded sequence into l  as shown by the following example. 
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