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Abstract

This study looks at key epidemiological details of pneumonia by using a mathematical model
that includes fixed point theory and fractional-order calculations to see how treatment and
vaccination affect transmission. Using fixed point theory for numerical simulations, it is easy
to show the relationship between pneumonia dynamics and the different values and
parameters in fractional-order models. Through more analyses, it has been shown that both
rising contact and weaker treatment would result in an increase in pneumonia cases. Also, the
study shows that increasing the numbers of vaccinated and treated individuals can fight and
reduce the occurrence of the disease among humans.
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1.0 Introduction

For the past decades, scientists have found it very important to model biological, physical,
and chemical phenomena and processes by using mathematical ideas. Our research shows
that mathematical models come in handy for exploring different issues that keep evolving in
the physical and life sciences. He envisioned the idea in 1776. Rather, McKendrick
developed the SIR model in 1927, which divides the whole population into people who are
susceptible, infectious, and recovered. At that point, mathematical modeling started
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addressing infectious diseases. Mathematics is applied to the study of biology these days,
allowing for better understanding of infectious diseases and new ways to restrict their spread.
Experts have created many mathematical models to get a better grasp of infectious diseases
and discover treatments for them [1-4].

These studies make a big impact on several scientific areas. To understand how pneumonia
develops and give suggestions for better treatment, the researchers used fractional-order
derivatives.

Infectious diseases are clear medical conditions, and they usually have a major effect on
people around the world. The change in neural cells happens when a person is affected by
bacterial, viral, fungal, parasitic, or by the protein disease agents called prions. Many people
suffer from tuberculosis and pneumonia caused by bacteria, HIV, and influenza caused by a
virus [6, 7].

Pneumonia occurs when bacteria, viruses, fungi, or parasites attack the lungs or their inner
parts which are called alveoli [8-9]. Usually, those who get pneumonia are seniors, babies,
and people who suffer from other medical conditions or have weak immune systems. More
often than not, pneumonia is caused by Streptococcus pneumoniae, which is known as
pneumococcus [10-11]. Treatments and vaccination efforts are used as the main ways to deal
with pneumonia infection [8]. Tilahun et al. [12] introduced and examined a new model of
pneumonia transmission in a group with various sizes, and recommended control options and
best ways to address the disease. The researchers found that using prevention and treatment
measures is the best way to tackle the problem of pneumonia, since it is the most cost-
effective choice. Ndelwa et al. [13] made a mathematical model and studied various
strategies for tackling pneumonia infection. They found that screening and treating the
infection at once is the best way to remove the pneumonia epidemic from the community.
Maximum control over the HIVV/AIDS-pneumonia co-infection was the main aim of Nthiiri et
al.’s project, as they analyzed the greatest level of protection possible for both conditions
[14]. They did not concentrate on preventing the spread of both infections combined; their
strategy aimed to prevent infection by just one. Much of the included studies neglected to
address treatment for the sub-models or for the people with both infections. It turned out that
when people are well protected, there are fewer HIV/AIDS and pneumonia cases. [15] built a
fractional Caputo derivative compartmental model to explore soil-transmitted helminth
infection dynamics and solved it using the Laplace-transform approach. The researchers
showed that the exact solution is reached by the infinite series, and a fractional order model is
more flexible than a classical model. Atokolo et. al. [16] developed a fractional order sterile
insect technology (SIT) model to work against Zika virus using the Laplace—Adomian
decomposition method (LADM) to find an analytical solution. It was shown that the
flexibility of the fractional model lets you change the response by varying its order in a
fraction. They proved that LADM is useful in resolving SIT models, Sweden shows a new
and practical way in the field. The results of their work showed that limiting the number of
contacts and enhancing how the disease is treated worked well to manage it as well as
improved flexibility of fractional models compared to the traditional models. James et al.
[18], came up with a fractional-order HIV/AIDS transmission model that uses the Adams-
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Bashforth-Moulton numerical method. According to them, dealing with the disease is most
successful when people interact less and doctors provide new treatments, as fractional models
are shown to be much more flexible than traditional ones. Abah et al. [19] presented a
fractional-order model for Diphtheria transmission along with using the Adams-Bashforth-
Moulton method. It was shown that fewer contacts and improved successful treatments with
fractional methods limited the spread of the disease compared to traditional ones. Atokolo et
al. [20] looked into Lassa fever using a fractional-order mathematical model, considering the
use of a power-law fractional derivative to check how vaccination and treatment influence the
way the disease spreads.

2.0 Model flow diagram

:L th Vf?

Fig.1: Pneumonia model Flow Diagram

2.1 Model equation

dd%zAh +7 NV, +oR, = 4,8, — (7, + 14,) Sy,
ddEtP = 2,5, —(6,+ 14,)Es,

%P=elEp —(oq + 6+ ) 1,
%:allp—(@+53+,uh)Tp, D
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+ 4, )Vh'

d—tp=¢1Tp —(0'+,uh)Rp,

dB

ot =Ag — 1gB.
|

Where 4, = ('Bl

o H BT, +ﬂ3B)

N, '

2.2 Model analysis

2.3 Fractional order model

DS, = A, +1V, +oR, - 4,8, —(7,+ 14,) Sy,

o DI'Ep = 24,5, —(6 + 14, Es,

(IECDtQIP :‘91EP_

LC o _
0 Dt TP _allP_

(a1+51+ﬂh)lp1

(¢1 +0; + th )TP’ 2

gc DV, =1,5, _(Tz + 4y, )Vh’

o DR, =T, ~(o+4)R;,

o DI'B=Ag— B

Subject to the initial condition

Basic Definition

>0,1,(0)>0,T,(0)=0,V,(0)=0,R,(0)>0,B(0)=0.

Definition 1: According to Caputo, the derivative of a function of order « that is not an

integer is defined

as shown below [23]:
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n—¢-1

“Dyw(V.,0)=

y (V,a)da  (3)

n-l<p<n,t>0.

Definition 2: Derovich et al [23] describe the non-integer Riemann integral as shown below:

0 ¢-1

L "o y(v.0)d0 @

ng(v,e)zﬁjo

Definition 3: The Laplace transform (LT) of w(V,6)is presented by Syafruddin and

Nooarani [23] as follows;

y(05) =1, [y (v.0)]

v (@,S)= j:e*”y/(v, y)do, S > . (5)
The following is the definition for the inverse Laplace transform
w(V,0) =Ly (V.9)]

b-+ico

w(V.0)=]

b—ico

e*y(V,S)dS, b=Re(s)>b, (6)
Lemma 1: for m—1<K <m, &> -1, ¢>0. we have;

7—k

1. D;gf:LJrl)
I'(r—k-1)
2. DyO=0.

3. DyRw(V.0)=y(V,0)

4, D;Rf,fl//(V,H)=1//(V,9)—28i1//(v,)(i9—;.

Definition 4: Let X eQ'(a,b),b>a, £€(0,1), then the given Caputo-Fabrizio fractional

k(&) gt

derivatives (CFFD) is ¢ D7 X (t):ﬁj X'(n)exp{—i_—ﬂdn, (7)
— P —
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Where k(&) in equation (7) satisfies k(1)=k(0)=1 in addition, if X is not in Q'(a,b),
then the equation becomes;

0 (0= A [ x(0)-x (o] - e

Definition 5: Let &£ <(0,1), and the integral of the function X to the fractional order & is
X (0) = [ X (0)+ [ X (m
k(g)r (5)

Lemma 2: The problem that occurs with CFFD is that {i?%iﬁ(:)d(t)lkéél’ where x is real

constant  and mother  words, it is  corresponding to the integral

X (t) = Xy + 5 X (t)+%j;x (n)dn.

Definition 6:[23,24] The Caputo-Fabrizio fractional derivative of Laplace transform is {" Dy,

£ e(0,1] of M (t) is given as;

SL[N(t)]-N(0)
S+&(1-S)

L[STIEN(1)]=

Disease free Equilibrium point

At the disease-free equilibrium, people experience no signs of illness.

(S, B2 12, T8, V2, RY, BY) = ( Mleatth) oo ahs xxﬁa}
,Uh(fz"'fl"',uh) ,Uh(z'z""[l"',uh) Hy,

2.4 Basic Reproduction Number

The complete number of infections going from one infected person to non-infected people is
what the Basic Reproduction number means. To find the Basic Reproduction number, next

generation method R = pFV is used and you have to determine the largest value p of the
Eigen vector from F that is a non-negative matrix along with V.
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0 Ble+m) Bo(ratum) Bi(ra+m) P 0 0 0
Ty +T F My T, AT R, T, T U, 4 P 0 0
F=|0 0 0 0 and V =
. . 0 0 0 -4 P O
0O 0 0 PR
0 0 0 0

RP — 0, ( P, B, + P pr, +a o, + alﬂZTZ)
0 P2P3P4(72+Tl+,uh) '

This is the dominant Eigen value.

2.5 Endemic Equilibrium point

Pneumonia remains constant among humans in the condition known as Endemic Equilibrium.

S — A PRP,RF
h e ]
(% —R)R,+7,7,)P,P,RP, + o Py 16,
oo APRRR
(o RJF, i PR, Pl
I = _ AP RRAG
P ((_ﬂ'P - Pl) R+ 7172) RR,RP, +ocRa .46 '
T =_ AR R A
i ((_ﬂ’P - Pl) R+ 7172) R,P,RP, +oRa.¢0, ,
V= — ARRPRT
" ((-%-R)PR+77,)PPRP +cPa gl
. RO A,

P oRa 4.0, — RP,RP,RF - BRPRR A, + B,RP,Rzz7, ,

(B1,+ BT, +p;B)

Substituting into the force of infection A, = N
h

we have:

P(@):Ml/ﬁﬁ"’Mz
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K, =0ARaud6 - A RRPRR - A RRRR 4, - A RRR 4,0 — A \RFo 4,6 - Ay R, 40,

_ 6, ( RS, + BB, + o fopty, + o o, )J

K,=PP|1
? 1{ P,RP, (7, +7,+ t4,)

K, = Plps(l_ Rop)-
If Ry >1It means that model (1) only possesses a special positive equilibrium point for

endemic states.

2.6 Sensitivity Analysis

It helps discover which population disease transmission parameters bring good results. It can

be determine using: S’ =(%j(ij
x J\ Ry

SR = _0.0401,
91"'/41

SR __ . p, (ﬂh +7, )¢1 —-0.9786,

(/31 (Tz +1) /th +((Tz +1)(¢1 + 53)ﬂ1 + alﬂz)/uh + ﬁzalfz)(¢1 +0,+ :uh)

SR‘? _ o ((ﬂl(rz +l)_ﬂ2)/uh2 +((72 +1)(¢1+53)181 -5 (Tz +51)),Uh _72ﬂ251> _ 0.92119,

(131 (72 +1) :uhz +((Tz +1)(¢1 +53)181 + alﬂz)ﬂh + BT, )(al +0, +:uh)

k]

RE _ 7, (:Uhsﬁl +ﬁ1(¢1 +7,+0, _1)luh2 +ﬂ1(71_1)(¢1+53)'uh +Z'1,320!1) =0.5785

(Tz +7 +,Uh)(ﬁ1(72 +1):Uh2 +((Tz +1)(¢1 +53)131 +a1ﬂz)ﬂh +ﬂzaﬁz—z)

s¥ -1 _.059196,
' T, +0 + 4,

SR‘? _ ((¢1+53+/uh):uh+(¢1+53+;Uh)72/1h)ﬁ1 ~0.01783
A (¢1 +0, + )ﬂl/uh + (¢1 +05 + H )ﬁlTZIUh + Byoq i, + BT,
;5 _ (alluh + 0‘172)ﬂz —0.9822,

(¢1 +0; + i, )ﬂl/uh + (¢1 +0; + i, )ﬂlrzﬂh + By, + BT,
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2
a, + 06, + u,

gRe — _

: =-0.10247

5 o, (14, +7,) 5% — _0.2966

(/31 (Tz +1) /th +((Tz +1)(¢1 + 53)ﬂ1 + alﬂz)/uh + ﬁzalfz)(¢1 +0,+ :uh)

ST =-0.0001478.

2.7 Sensitivity Bar chart

1 I 0,=0.0401
| ]¢,=0.9786
05 B o _-0.92119
| |r,705785
I <. -05919
-] I 5,=0.01783
| ]B,=0.9822
0.5+~ I 5,=-0.10247
I 5.--0.2966
qt ‘ : : - [ n,=0.000147

0 2 4 6 8
Fig.2: Sensitivity Bar chart

2.8 Interpretation of pneumonia Sensitivity Bar chart

As seen in the above figure 2, the figures show the sensitivity indices of basic reproduction
number for pneumonia diseases. When the values of positive indices for pneumonia
parameters increase, they become more able to lead to greater spread of the disease. When a
parameter’s value increases, the basic reproduction number gets larger and vice versa.
Increases in these parameters help reduce disease in the community and bring down the
number of infections likely to occur.

3.0 Pneumonia fractional order model
3.1 Existence and unigueness results:

With the help of Banach’s and Krassnoselskii’s theorems, we can show that the model (1)

does have at least one solution.
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Ah+&ﬂ+%5%

h

f1=(t,Sh,EP,IP,TP,Vh,RP,B)=Ah+z-2Vh+o-Rp—(

h _(71+1Uh)8h’

B, + BT, +B;B)

f2=(t,Sh,EP,IP,TP,Vh,RP,B):( N
h

Sh_(01+1uh)EP’

f,=(t,Sy,Eps 15, To, Vi, Re, B) = OE, —(a +6, + 14, ) 1,
fo=(t,5 Eps 15, To,Va, R, B) =l — (4 + 6, + 14, ) T, (8)
fs=(t.5y Ep, 15, To. Vi, R, B) =178, —(7, + 4, )V,

fs=(t,Sy, Ep. 15, Tp.Vy Ro, B) = 4T, —(o+ 14, )R,

f,=(t,S,,Eps 15, To,Vs, R, B) = Ay — 145B.

Where S, (0)=M,,E, (0)=M,,1,(0)=M,, T, (0)=M,,V, (0)=M,,R, (0)=M; and

B(0)=M, .

So our problem becomes:

CDIA(L) = (.S, Epi 15, T Vi, Re, B),
CDfB(t)=1,(t,S,,Epi 15, T,V Re, B),
CDIC(t)=f,(t,S,,Ep 15, Tp .V Rs, B),
D (t)=1f,(t,S,,Ep 15, T,V Rs, B),
CDFE(t)= 5 (t,S,,Epi 15,5 Vi, Re, B),
SCDEF () = s (1,5, Ep, 15, Tp,V, Ry, B),

o DIG(t)=f, (t,S;.Ep. 15, T V,, Re, B).
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Where S, (0)=M,,E, (0)=M,,1,(0)=M,,T,(0)=M,,V, (0)=M;,R, (0) = M an

B(0)=M, .
We consider
s, M, f,(t.h(t))
E, M, f, (t.h(1))
I M, fs (t'h(t))
h(t)=| T, |, hy(t)=|M,| And F(th(t))=| f,(t.h(t)) |
Vi M f (t, h(t))
R, M, f(th(1)
B M
7 f,(t.h(t))
Therefore, system (9) can be expressed as follows:
6 DIh(t)=F(t,h(t)), 0<e<l,
h(0)=h. (10)

The outcome of equation (10) is given by lemma 1 only if the right side is equal to zero at 0.
That is:

(1) « h, = xF (th(t) « X [ F(en(n)n, -G

0 0

1-¢ and X =—2

K(e) K(e)

Where X =

Let us now define the Banach space D = L[O, P] for more analysis by defining the norm of

D:L[O, P] on 0<t<P<ww,

I = sup {jn(t):h < D).

te[O,F’]
Theorem (Krassnoselki fixed point theorem).

Let DY be a convex and closed subset and there exist two operators Q, and Q,such that:
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1. Qh+Q,h, eD;
2. Q, is continuous, compact, and Q, is contraction;

3. There exists at least one fixed point hsuch that: Q,h+Q,h =h holds.

(H,) Let K. >0 be aconstant, then

<K, h—ﬁ‘.

‘F(t,h(t))—F(t,ﬁ(t)j

(H, ) for the two constant A. >0 and B_ >0, one has |K (t,h)|< A |h|+B,,

Theorem 4.1

The problem of equation (2) has at least one solution if GK_ <1.

Proof

Let define the set D as the set that is both compact and closed.

D= {h eY HhH < r}- Let Q, and Q, be two operators, then:
Q =h(t)=h, +GF (t,h(t))
szh(t):h0+éj;F(g,h(5))d5 (12)

for the contraction condition of Q, defined in equation (12). Let h,heY, one has

Qh-Q,h|=Sup F(t,h(t))—F(t,ﬁ(t)j‘ (13)
te(O,F’)
<GK, |[h- HH thus, Q, is contraction.

For compactness of Q,, we consider

()= ‘é‘ E F (. h(ﬂ))dﬂ‘ , (14)

©2025 GLOBAL PUBLICATION HOUSE | International Journal of Mathematics 66



Fractional mathematical model for the dynamics of pneumonia transmission with control using fixed point
theory

Q,h(t) <

GJ‘; F (77, h(n))dn‘.

We take the maximum of equation (14), which result to:

Q] < G sup [[|F (.h())fon. (15)

te[0,P]

IQah] <G Sup[ A [+ B, ]

IQ,h|<GP(A.r+B;).

Then, Q, is bounded in equation (15).

Let the domain of T be t, <t,, we have:

Qh(t,)-Q, h(_tl)‘= G [ F (nh(n)Mn-G [ F (n.h(n))in

Qh(t,)-Qh(t) =G [ F(n,h(n))dméI:F(n,h(n))dn (16)

0

<G

th (tz ) _Qz h (_tl

N—

[ Gy

Qh(t,)-Q, h(t)| <G(Aer +By).

Upon t, — 1, the right side of equation (16) tends to zero.
in addition, Q, is uniformly bounded, so
|Q.h(t,)-Q,h(t,)|—0.

So, all the assumptions of theorem 5 are valid, and the examined model (10) has at least one
solution, since Q, is completely continuous.

Theorem 6
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Emmanuel, L., Omale, D., Atokolo, W., Amos, ]., Abah, E., Ojonimi, A., Onoja, T., Acheneje, G., & Bolaji, B. (2025). Fractional
mathematical model for the dynamics of pneumonia transmission with control using fixed point theory. GPH-International Journal of
Mathematics, 8(5), 55-86. https://doi.org/10.5281/zenodo.16364036

As aresult of (H,), if GF(1+P)<1 holds, So, the only way to solve the problem given in

equation (10) is by doing what is written. So, several different solutions can be found to the
model (2).

Proof

Let o:Y —Y be an operator defined by :

oh(t)=h,+GF (t,h(t))+G [ F (7.h)dn.

Let h,heY, then,

o]z ()

F(t,h(t))—F(t,ﬁ(t))—F(n,ﬁ(n)j‘dn,

< Sup

te[O,P]

<GK,h-h

a(h)_a(ﬁj

As a result, the most possible outcome for problem (10) is only one option, meaning that

+GKFP%—HW

<GKg( 1+PH H (17)

model 2 has only one solution.

3.2 Developing a generic algorithm to solve the model under consideration

Let K(a)zl, the use of Laplace transform gives us a series form of the solution handy.

Therefore, the algorithm in Figure 1 can be created.

SUSOLS0)_, Ly o (847,059,

_ S, .
S+o(1-9) N, nm(mrm)S,

SL[aJU]—SW)_Qyp+ﬁJp+@B)S
S+o(1-S) N,

h_(01+:uh)EP’
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S L[Ip(t)]—S(O)

S+o(1-5)

=0E, — (o, +6,+ 1) 15, (18)

S L[TP (t)]—S (0)

S+G(1—S) :allP_(¢1+53+luh)TP’

S L[Vh (t)]—S (0)

S+o(1-5)

=58, — (72 + 4 Vi

SL[R,(t)]-5(0)

S+O'(l—S)

=¢751Tp —(G+,uh)Rp,

SL[B(t)]-s(0)

S+o(1-9)

=Ag — 14B.

From (18) we obtained:

ﬂll p +ﬂ2Tp +ﬁSB)
Nh

L[s,(t)]= Shs(o) 2 +0§1_S) L{Ah +1V, +OR, i

S _(Tl+:uh)sh:l’

L[EP (t)]: EpS(O)+ S+0'§1—S) Ll:(ﬂllp +ﬁ”\2|-:p +ﬂ3|3) s, _(01+:uh)EP]'

1-S

L[1,(t)]= 'Pé0)+s+aé )L[elEp—(al+51+yh)|P],

T, (0) . S+o(1-S

)L[allp—(¢l+53+,uh)TP], (19)

LT ()]

V,(0) S+o(1-S)

L[V, (t)]= st S L[ .S, = (7, + Vs |

Volume 8 Issue No 5 (2025) Access: https://gphjournal.org/index.php/m 69



Emmanuel, L., Omale, D., Atokolo, W., Amos, ]., Abah, E., Ojonimi, A., Onoja, T., Acheneje, G., & Bolaji, B. (2025). Fractional
mathematical model for the dynamics of pneumonia transmission with control using fixed point theory. GPH-International Journal of
Mathematics, 8(5), 55-86. https://doi.org/10.5281/zenodo.16364036

Applying the initial conditions

5, (0)=M,.E» (0)=M,,I,(0)=M,,T.(0)=M,,V, (0)=M,,R,, (0) =M, and B(0)=M,

we have:

M, S+o(1-S gl + 6T + 5B
L[Sh(t)]:?l‘i'—é )L[Ah+T2Vh +O'Rp_( L l\2|hp : )Sh_(Tl'hUh)Sh:l,

L[Ep(t)}=%+s+0§_s) L[(ﬂ””ﬁ”ﬂﬁ) S,

_(@f+ﬁ%)EP]'

wL[@E (o +6,+ 1)1 ],

L[lp(t)]=%+

] M, S+0@

L[ To () =5t 5) L[al o —(d+8+m,)Tp |, (20)

L[V, (t)]=%+% L[ 7S, — (7, + 1, )Vy .

]Z%Jr&

L[ R, (t) L[ 4T, ~(o+ )R, |,

S+o(1-5)

L[B(t)]:%+ L[Ag — 15B].

We assume that the solution takes the form of an infinite series, as presented below:

n 5 (1) (0= 2T
>

as:
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v e (o £

N=n:T, =S, (t) oy () + Sy () Lo gy () + et S gy () 1oy (£) +Spo (E) 1o (1)

Similarly

To (1)S, (t)=iUn(t), where
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n=n:U, =S, ('[)TPn (t) +S,, (t)Tp(n_l) (t) +o.t Sh(n—l) (t)Tm (t) +Sh, (t)TPO (t)

n=n:W, =S, (t)B, (t)+Sy (t)B, 4 (t)+.+ By (1) By (1) + Sy, () By (1)

taking into consideration these values, model develops

ﬂli Ip +ﬂziTp +ﬂ3§:Bj

S S "

. B A wv w R _( K=0 K=0
L{ZSh(t)}—MlJrS-’_G(l S)L h+r2KZ:O h+a§) ) \
K=0
_(Tl+/'lh)zsh
K=0
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L_ilp(t)_=%+% {ej“Ep (et 8+ 1) S, (1)
L_iTp(t)_=%+WL{%ilp() (46 +1) YTt _, 1)
20| 2T 3 - () S0

Comparing the terms of equation (21), the following complications arises.
Cases 1: If we let n=0, then

S +a(l—

L[Sho(t)]:%Jr S S)L(Ah)’

L[Epo (t)] =%’

(0] =22,
[T (0] =8, @)
L[V ()] = 5
LR (1)) =%
LBy (0] ="

We take the inverse Laplace transform, we obtained:
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Spo(t)=M, +S +(Ah)[l+ o-(t—l)],

Eeo () =M,

o (1) = M,

Too (1) =M,, (23)
Vio (1) =Ms

Reo (t) =M,

By (t) =M,

Cases 2: If we let n=1, then:

L[5 (1] - 22285 L{‘(m" + B0 + By

= S N, ShO_(Tl+/uh)Sh0:|’

L[EPl (t):l = ° +O'é1—5) L{('BJO +ﬂ2NUhO +ﬁ3wo)

Sho _(01+1Llh)EP0:|’

L[ 15 (1)] _S+o(-9) L[ 0Epy —(ct, + 3, + ) 1o |
L[Tpl (t):l - w Ll:allpo ~(4+3+ 4, )TPo]’ (24)
L[V, (1)]= %1_8) L[ 2S00 — (7, + 24 Vo |

L[Rpl(t)]zwl-[@-rpo _(‘7+ﬂh)Rpo]

L[Bl(t)]zwl-[_ﬂs%]'

We take the inverse Laplace transform we have:
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_ _(ﬁllpo + B3 Teo +ﬁsBo)

Spo — (7 +yh)8ho}[1+a(t —1)],

_ (ﬂll po + P2 leo +ﬂsBo)

Sho —(8, +,uh)EPO}[1+ o(t-1)],

[IPl (t)] = I:elEPO _(al +0, +ﬂh) IPo:H:l_'_G(t _1)],
[TPl (t)] = I:alIPO ~(A+0;+ a4, )Tpo][1+ ot —1)], (25)

|:Vhl (t)] = I:Tlsho - (Tz + Hy )Vho ] [1"' o (t _1)] '

[Ra(t)]= w[mw —(o+ )Ry [[1+ 0 (t-1) ],

[B(0)]~[-aBu ][+ o(t-1)].

Case 3: if n=2 we have:

N e

h

Sta _(71 +:uh)Shl:|1

LI:EPZ (t):l = > +Uél—5) L{(ﬂl-rl +'BZNUhl +'B3W1) Sit _(91+ﬂh)Ep1}

L[IPZ (t)]=WL[ﬁlEpl—(%+é}+ﬂh) |p1:|,

L[TPZ (t):lZWL[%IM_(@‘F&‘FIL‘OTM] (26)

L[VhZ (t)] - w LI:Tlshl ~(7,+ 44, )Vm],

}=S+GG—S

L[R,(t) ) L[ 4T, —(o+m)Ry |,

L[Bz (t)} =%1_S)L[_%Bl]'
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Taking the inverse Laplace transform we have:

(S0 (t)]= {_ VA +ﬂ|i|-:Pl +4;B,) Su—(7,+ yh)Shl}[l+ o(t-1)],

[EPZ (t)] _ |:(ﬂ1IP1 +/B|i|-:|=1 +13381)

St _(01 + Hy ) Epl}li“o_(t_l):l’

(1o, ()] =[ 6o~ (o + 6, +14,) 15y |[1+ 0 (t-1)],
[Too (t) | =] @lpy = (d+ 85+ 11,) Toy [[ 1+ (t-1) ], (27)

[th (t)] - [Tlsm — (72 + sty )Vh1:|[1+ ot _1)} ’

_S+o(1-S

(R, (t)]= )[@gf{a+y0Rm]ﬁ+aa—n]

[8,(t)]~[-B][L+ o(t-1)]

Substituting (25) into (27) we have:

(ﬁl |:|:91EP0 _(al +0, +:uh) IPO]I:1+G(t _1)]] Shl)

Sha (t) ==

N,
_ﬁz I:alIPO _(¢1 +0;+ )TP0:||:1+0(t _1)] Shl_
N,
+ ) P [[—,UB BO][1+ ot —1)]} S
L Nh _

—(7y+ 14,) Sy [1+0(t —l)],
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(ﬂl [elEPO _(0‘1 +6; +ﬂh) IPO]I:1+ G(t _1)])
[EP? (t)]: Nh
X B, ([allpo —(d+ 8+ 1) Top |[1+ 0 (1 —1)])
Nh
. Ba~1:B, ][ 1+ 0 (t=1) | Sy, — (6, + 14, )
Nh
{('Bllpo +'BIZ\I:PO +'B3Bo) Sho _(91 + 4y ) EPOj|

[1+o(t-1)][1+o(t-1)],

Is, (t) = 01[(ﬂllpo +ﬂ|i|TPO +ﬂSBO) Sho _(‘91 +:uh)EP0:||:1+O-(t_l):|

— (o + 0, + 14, ) 0Epy — (4 + 6, + 11, ) 1o |[1+ o (t=1) [ 1+ 0 (t-1) ],

(27)

[ [0En —(au+6,+ i) 1o 140 (t-1)] e
TPZ(t)_(¢1+53+/uh)|:0!1|P0_(¢1+53+,uh)TPO:||:1+O'(t—1):|]|:l (t-1)].
| (Bulpo + BaTeo + 5By )
Vi, (1) n[— N, Sho—(rl+uh)8ho}[1+a(t—1)] [1+a(t—1)],
_—(Tz + U )[rlsho —(7, + )VhO][lJra(t —1)]

] aloo—(8+3,+ 1) Tog |[1+ 0 (t-1)]

S0 (o )R (-]

S

R, (t)w{ }[1+0(t—1)],

—(o+uy,)

B, (1) =]~ [, ][ 1+ o (t-1) | [1+ & (t-1)].

The technique can be used to discover further terms in the solution. For that reason, we find
the solution as follow:

Sy (1) =S (t)+ S (t)+S0, (t)+...

Eo (t)=Epo (t)+Epy (t)+Epy (t)+...
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1o (£) = Lo () 1oy (£)+ 1oy (t) ...
To (1) =Tog (1) 4Ty () + Ty (1) ..
Vy (t) =V (£) 4V, () +Vig () ..

Ro (1) = Roo (1) + R (1) + R (1)

B(t) =B, (t)+B(t)+B,(t)+....

4.0 Numerical Simulation
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Fig.3i: Infected humans with pneumonia
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Fig.4b: Surface plot showing the impact of

Fig.4a: Contour plot showing the impact of
B and B, on R}

B and B, on Ry

(3a) displays the impact of treatment rate (al)on susceptible humans to pneumonia. It
appears that giving treatment to more patients at the rate (al) leads to rising numbers of

humans who can develop pneumonia. (3b) displays the impact of treatment rate (al)on
Exposed humans to pneumonia. It appears that giving treatment to more patients at the rate
(al) leads to decrease in the numbers of humans exposed to pneumonia decreases. (3c)

displays the impact of treatment rate (al)on infected humans with pneumonia. It appears

that giving treatment to more patients at the rate (al) leads to decrease in the numbers of
humans infected to pneumonia decreases.

(3d) displays the impact of treatment rate (al)on humans’ pneumonia treatment. It appears
that giving treatment to more patients at the rate (al) leads to increase in the numbers of

humans on treatment of pneumonia. (3e) displays the impact of treatment rate (al)on

vaccinated humans against pneumonia. It appears that giving treatment to more patients at the
rate (al) leads to increase in the numbers of vaccinated humans against pneumonia. (3f)

displays the impact of treatment rate (al)on Recovered humans from pneumonia. It appears
that giving treatment to more patients at the rate (al) leads to increase in the numbers of
Recovered humans from pneumonia. (3g) displays the impact of vaccination rate (rl)on

susceptible humans to pneumonia. It appears that vaccinating more patients at the rate (rl)

leads to rising numbers of humans who can develop pneumonia. (3h) displays the impact of
vaccination rate (rl)on Exposed humans to pneumonia. It appears that vaccinating more

patients at the rate (rl) leads to decrease in the numbers of humans exposed to pneumonia
decreases. (3i) displays the impact of vaccination rate (rl)on infected humans with

pneumonia. It appears that vaccinating more patients at the rate (rl) leads to decrease in the
numbers of humans infected to pneumonia decreases. (3j) displays the impact of vaccination

rate (Tl) on humans’ pneumonia treatment. It appears that vaccinating more patients at the
rate (rl) leads to increase in the numbers of humans on treatment of pneumonia. (3k)
displays the impact of vaccination rate (rl)on vaccinated humans against pneumonia. It

appears that vaccinating more patients at the rate (rl) leads to increase in the numbers of
vaccinated humans against pneumonia.
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(31) displays the impact of vaccination rate (z;)on Recovered humans from pneumonia. It
appears that vaccinating more patients at the rate (Tl) leads to increase in the numbers of
Recovered humans from pneumonia. (3m) displays the impact of treatment rate (al)on

Recovered humans from pneumonia. It appears that increasing treatment rate (al) leads to
decrease in the cumulative new cases of pneumonia. (3n) displays the impact of vaccination
rate (rl)on Recovered humans from pneumonia. It appears that increasing vaccination rate
(Tl) leads to decrease in the cumulative new cases of pneumonia. (4a) displays contour plot
of g and g, concerning R,. The graph’s figures demonstrate that the maximum value is 0.6
and this means that by varying the parameters g, and £, , the transmission rate will be less
than one (1) when measured. When these factors rise, it demonstrates that there is likely to be
a big outbreak of pneumonia. (4b) It was shown that the basic reproduction number R,
decreases and goes below one (1) when g and g, goes down. If S and g, decrease, it

would help to lower the effect of pneumonia among people. Lack of suitable measures on
pand g, will make pneumonia more present in the community.

5.0 Conclusion

A mathematical model based on the Fixed point theory fractional derivative is introduced in
the study to study transmission and ways to manage pneumonia. With great importance
placed on fractional modeling, we analyzed the fractional pneumonia model in theory, aiming
to understand if the answers are unique and stable, along with looking into factors that can
influence the spread of the disease in the society. When solving using numbers, Fixed point
theory fractional approach was chosen. Simulations proved that the level of disease incidence
depends on the chosen model parameters and on fractional orders of the Caputo operator.
Besides that, we looked at the results obtained by adjusting important parameters, including
the infection in humans and the rate of vaccination among people free of the disease. The
analysis proves that by increasing the number of pneumonia treatments and vaccines, the
number of cases in the population can be lowered. Other research can look into adopting the
methods in [20] to address nonlinear partial differential equations and find analytical
solutions.
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A, 0.0413 Estimated
A, 0.0051 Estimated
1 0.0002 [14]

A 0.0001 Estimated
6, 0.498 [13]

a, 0.0238 [16]

o 0.04 Estimated
B 0.0476 Estimated
B, 0.0275 [15]

S, 0.00274 [13]

5, 0.001 [13]

¢, 0.33 Estimated
7, 0.361 Estimated
7, 0.524 Estimated
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