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Abstract 

COVID-19 remains a significant global health challenge, especially in regions where healthcare 

systems are strained and treatment accessibility varies. This study develops a fractional-order 

mathematical model for COVID-19 transmission that incorporates treatment effects to realistically 

capture disease control measures. Using Caputo fractional derivatives, the model effectively accounts 

for memory effects and complex time-dependent dynamics that classical integer-order models may 

overlook. The model’s semi-analytical solution is obtained through the Adams–Bashforth–Moulton 

method, ensuring accurate and computationally efficient results. Analytical proofs confirm the 

existence, uniqueness, and boundedness of solutions, verifying the model's robustness. A thorough 

sensitivity analysis identifies critical parameters impacting COVID-19 spread, such as treatment rate 

and transmission coefficients. Simulation outcomes demonstrate that increasing treatment rate and 

reducing contact rate  substantially decrease infection prevalence. Comparative studies reveal that the 

fractional-order model offers superior flexibility and precision over traditional integer-order models in 

representing COVID-19 dynamics. The Adams–Bashforth–Moulton method serves as an effective 

numerical technique for approximating model solutions, supporting its use in epidemic control 

strategies. The findings highlight the vital role of sustained treatment efforts combined with 

behavioural controls in mitigating COVID-19 transmission. This model provides a valuable 

framework for public health planning and can be adapted to other infectious diseases exhibiting 

memory-dependent transmission characteristics 
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Introduction  

The outbreak of Coronavirus Disease 2019 (COVID-19), caused by the novel severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in late 2019 

and rapidly escalated into a global pandemic. The World Health Organization (WHO) 

declared COVID-19 a public health emergency of international concern in January 2020 and 

a global pandemic in March of the same year [1]. The virus spread rapidly across continents, 

overwhelming healthcare systems and disrupting social and economic activities worldwide. 

COVID-19 is primarily transmitted through respiratory droplets and aerosols during close 

person-to-person contact, though indirect transmission via contaminated surfaces has also 

been documented [2]. The disease presents a wide range of clinical symptoms, from 

asymptomatic and mild cases to severe respiratory distress and death, particularly among the 

elderly and those with underlying health conditions [3]. The emergence of new variants has 

further complicated transmission patterns and disease severity. To contain the spread of the 

virus, countries implemented a variety of public health interventions, including lockdowns, 

mask mandates, travel restrictions, and vaccination campaigns. Non-pharmaceutical 

interventions (NPIs) played a key role in the early phase of the pandemic, with studies 

indicating that strict NPIs could reduce transmission rates by up to 90% when effectively 

enforced [4]. The development and deployment of vaccines marked a major scientific 

milestone, though global disparities in vaccine access and hesitancy continue to pose 

challenges [5]. 

Mathematical modeling has been instrumental in analyzing the spread of COVID-19 and 

evaluating control strategies. Models such as the SEIR (Susceptible–Exposed–Infectious–

Recovered) framework have been widely used to simulate epidemic dynamics and inform 

public health decisions. Recent models have integrated environmental and behavioral factors, 

improving predictive accuracy and supporting targeted interventions [6][7]. Despite 

significant progress in vaccine development and treatment strategies, COVID-19 remains a 

major global health concern. The continuous emergence of new variants, coupled with 

varying levels of immunity and healthcare infrastructure, underscores the need for sustained 

research, surveillance, and policy adaptation. Moving forward, combining vaccination, 

antiviral treatments, and dynamic public health responses will be essential in mitigating the 

long-term impact of the pandemic [8][9]. 

Fractional-order mathematical models leverage derivatives of non-integer order to capture memory 
and hereditary characteristics in dynamic systems—a notable enhancement over classic integer-order 
approaches. Such models are increasingly applied in fields like epidemiology, control systems, and 
viscoelastic materials, where past states significantly affect current dynamics [10]. The fractional 
framework allows for richer dynamical behaviors, such as long-term memory effects and anomalous 

diffusion, providing a more accurate description in many real-world systems compared to their 
integer-order counterparts [11]. A popular numerical technique for solving fractional differential 
equations is the Adams–Bashforth–Moulton method, a predictor–corrector scheme adapted 
specifically for fractional calculus [12]. This method combines the explicit Adams–Bashforth 
predictor with the implicit Adams–Moulton corrector to it eratively generate approximate solutions 
with relatively high accuracy and computational efficiency. Its effectiveness and stability have been 
demonstrated across various scientific applications, including modeling infectious disease dynamics, 

where it helps simulate fractional-order models that capture complex transmission patterns [13]. 

[14] developed a fractional-order SEIR model to study the dynamics of COVID-19 

transmission incorporating quarantine and vaccination measures. They used Caputo fractional 

derivatives to capture memory effects in disease progression. The model's existence and 

27



Numerical Simulation and Fractional Order Analysis of COVID-19 Model with Treatment Intervention 

Volume 8 Issue No 3 (2025) Access: https://gphjournal.org/index.php/m 

 

uniqueness of solutions were proven analytically. Numerical simulations were carried out 

using the Adams–Bashforth–Moulton method. The results showed that fractional-order 

models provided better fitting to real epidemic data compared to integer-order models, 

highlighting the impact of quarantine and vaccination rates in reducing disease spread. They 

concluded that fractional derivatives are effective in capturing complex dynamics and 

recommended fractional models for epidemic forecasting. [15] proposed a fractional-order 

SIRS model to analyze the effects of treatment and reinfection on tuberculosis transmission. 

They derived conditions for the stability of both disease-free and endemic equilibria using 

fractional Lyapunov techniques. Sensitivity analysis identified treatment rate and reinfection 

parameters as critical factors influencing disease prevalence. Their simulations demonstrated 

that increasing treatment rates led to a significant decrease in infectious individuals, while 

reinfection slowed disease elimination. They concluded that incorporating fractional calculus 

enhanced model realism and control strategy evaluation.[16] formulated a fractional-order 

SEIQR (Susceptible-Exposed-Infected-Quarantined-Recovered) model for dengue fever, 

incorporating vector dynamics and seasonal effects. The authors analyzed the model's 

stability using eigenvalue techniques and computed the basic reproduction number. 

Numerical solutions were obtained via the predictor-corrector method. Results indicated that 

fractional orders between 0.8 and 1 better captured seasonal fluctuations and disease 

persistence. The study concluded that fractional models are well-suited for diseases with 

environmental and temporal variability, and that quarantine measures effectively reduced 

infection peaks. [17] studied a fractional-order SI model for hepatitis B virus transmission, 

incorporating vaccination and treatment delays. They applied Laplace transform methods to 

prove solution existence and employed numerical simulations based on the Adams–Bashforth 

method. Their analysis revealed that fractional orders less than one significantly affected 

long-term disease dynamics. The model predicted that timely treatment combined with 

vaccination effectively lowered infection rates. The authors concluded that fractional-order 

models offer improved flexibility in describing disease latency and control interventions.  

The main objective of this study was to develop and analyze a fractional-order mathematical 

model for COVID-19 transmission that incorporates treatment effects, aiming to capture the 

disease's complex, memory-dependent dynamics more accurately than classical models. The 

study sought to obtain a reliable semi-analytical solution using the Adams–Bashforth–

Moulton method, investigate the model's mathematical properties, identify key parameters 

influencing disease spread through sensitivity analysis, and demonstrate the effectiveness of 

treatment and behavioral interventions in controlling the epidemic. 

     1.1  Preliminaries 

This aspect explores fundamental ideas and results from the field of fractional calculus. In 

particular, we employ both left- and right-sided Caputo fractional derivatives, as detailed in 

references [18, 19, 20]. The study also emphasizes how fractional calculus can be effectively 

applied to model complex phenomena in diverse areas such as physics, engineering, 

biomathematics, and other branches of science 

Definition 1: Let ( ),f R then the right and left Function's Caputo fractional derivative 

f is given by  
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Definition 2: The Mittag-Leffler function in generalized form  ,E x   for x R  is given by   
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This alternatively can be shown as 
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The function  1

,t E t 

     is Laplace transformed as 
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Proposition 1.1. Let  ( )f R d R  and , 1 ,R b b     Consequently, the 

following requirements are met: 
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1.1 Model formulation  

This study presents a compartmental mathematical model designed to represent the transmission 

dynamics of COVID-19 within a population. The model divides the population into distinct 

compartments, each corresponding to a specific stage of the disease or group within the population. 

Using differential equations, it describes how individuals transition between these compartments over 

time, enabling the simulation of the epidemic's progression and the assessment of various intervention 

measures. The total population (t)N is divided into six epidemiological compartment. The 

susceptible humans S(t)  exposed humans E(t) , the infected humans I(t) , the deceased  

population D(t) , individuals in treatment class T(t) , recovered humans R(t) . Suppose   

denotes  recruitment level that brings every  individuals into the susceptible compartment. 

The susceptible population is decreased  by   where the exposed individuals progress to  

infectious class at the rate 1 .    and 1   the treatment and disease induced death rate 

respectively  and   denotes   recovery rate of infected individuals   where 2  represents 

burial rate of deceased humans  and population of every compartment except (t)D by  the 
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natural death rate  . Based on the model descriptions and figure 1. We have the following 

differential equations  
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Figure1:  schematic flow chart of the model 
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2.1 Fractional COVID-19 mathematical model 

The integer-order COVID-19  model given in equation (5) by incorporating the Caputo 

fractional derivative operator. In contrast to the traditional model in equation (5), the 

fractional version provides increased adaptability, enabling a wider range of dynamic 

behaviors. The fractional modeling framework for COVID-19 is thus outlined as follows: 

 ( ) ,a

tD S S       

 
1 ,a

tD E S K E    
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1 1 2 ,a

tD D I T D       

 .a

tD R T R     

The force of infection for the covid-19 model is given as: 
(I D T)

N




 
  

Where; 
1 1( ),K    2 1( ),K      3 1( )K     

Assuming favorable initial conditions 

(7) 

 

3  Model Analysis 

3.1. Positivity of model solution 

Considering  the non-negativity  of the initial values. 

 lim . ,Sup N t





 

Suppose  0lim . ,Sup N t



 then the feasible region of the model is given by:  
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6 ,R  

Hence    is positively invariant. 

If 0 0 0 0 0 0, , , , ,S E I T D R are non-negative.  Therefore the solution of  model (6) will also be non-

negative for 𝑡> 0.  Taking  the first equation from equation  (6), we have that 

 ( ) ,a

tD S S       

But 0,  then  

 ( ) 0,a
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Taking the  Laplace transform; 
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Taking  the inverse Laplace transform yields 

    ,1 0S t E S                                                                            (8) 

Given that the term in equation  (8) on the right is positive, we can now deduce that 0S   for 

0t  . Similarly, we  have that 0 , 0, 0, 0, 0E I T D R     are positive. The solution will 

continue to be in 6R
 for all  0t   with positive initial conditions. 

 

3.2 Boundedness of solutions of the COVID-19  fractional –Order model. 

The total population is given  by: 

( ) ( ) ( ) ( ) ( ) ( ) ( ).N t S t E t I t T t D t R t     
 

So that equation  (6) gives  
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Taking   Laplace transformation equation (9) yields  
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Taking inverse Laplace transform of equation (10) gives  
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At t  , the limit of equation  (11) yields 
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This means that, if N



  then  N t




  which implies that,  N t  is bounded. 

 

3.3 Existence and uniqueness of solutions of the model  

Let T  be a real nonnegative number, given that X = [0, T]. The collection of every 

continuous function defined on X is denoted by 
0

eN X with norm as  

   sup , .J J t t X 
 

Taking into account model (6) with the initial  conditions  in (7) gives  

    , ,0 ,a

tD J t J t G x t T     
 

  00 .J J                                                                                                      (12) 

32



Ezugorie, I. G. (2025). Numerical Simulation and Fractional Order Analysis of COVID -19 Model with Treatment Intervention. GPH-
International Journal of Mathematics, 8(03), 26-47. https://doi.org/10.5281/zenodo.15630338 

 

©2025 GLOBAL PUBLICATION HOUSE | International Journal of Mathematics  

 

Where               , , , , ,J t S t E t I t T t D t R t denotes  the classes, and G is a continuous 

function with the following definition;  
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Using proposition (2.1), yields,  
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The Picard iteration of (14) is given below  
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Changing  the initial value problem in equation  (12)  yields ; 

   
 

    
1

0

1
0 , .

t

J t J t B B d


   



  

 
                                (16) 
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Lemma 1. The vector   ,B t J t  satisfies the Lipchitz r on a set    60,T R  with the 

Lipschitz constant given as; 

   * * *

1 1 1max ,( ), ( ), ( )I D T                 

Proof  

    1 1, ,B t S B t S
 

 

( )

( )

I D T
S S

N

I D T
S

N







  
   

 

   
     

  

 

 
   1 1

( )
_

I D T
S S

N
S S

 
 






 


 

 
     *

1 1S S S S    
 

 
     *

1 1 1 1, , .B t S B t S S S     
 

So that: 

    2 2 1 1 1, , ( ) ,B t E B t E E E      

    3 3 1 1 1, , ( ) ,B t I B t I I I        

    4 4 1 1 1, , ( ) ,B t T B t T T T      

    5 5 1 2 1, , ,B t D B t D D D    

    6 6 1 1, , .B t R B t R R R    

And  

     2 1 2, , .B t J t B t J t J J   
 

  * * *

1 1 1max ,( ), ( ), ( )I D T                  (18) 

Lemma 2: There is a solution to the initially value problems (6), (7) in equation (18). 

   0 .cJ t L F
 

 The solution is investigated   using fixed point theorem and Picard-Lindel of 

     ,J t W J t When the Picard operator, represented as S, is defined as; 

 
   0 * 0 6: , , .C CW L F R L F R   

Therefore,     
 

    
1

0

1
0 ,

t

S J t J t J J d


   



  

   

      1 2S J t S J t  

 
 

       
1

1 2
0

1
, ,

t

t B B B J d


     



      
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 

       
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1 2
0

1
, ,

t

t B J B J d


     



  
 

 

 
 

 
1

1 2
0

t

t J J d


 



  
   

      
 1 2

1
S J t S J t

S


  

 
 

When  
 

1
1

S





 
the solution  to equations  (6) and (7) is unique since the Picard 

operator produces a contradiction. 

 

3.4. The basic reproduction number (R0) and model equilibrium point: 

"The basic reproduction number, often referred to as the fundamental transmission rate of an 

infected individual, represents the average number of secondary infections generated by a 

single person infected with COVID-19 in a fully susceptible population over the course of 

their infectious period. This metric is derived using the next generation operator method 

applied to the system of equations governing the disease dynamics [20]. 

 1

0R FV  where  is the dominant eigenvalue of 
1FV 
 

0

0 0 0 0

0 0 0 0

0 0 0 0
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   
 
 
 
 
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 

 
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 

 
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 
 
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 
  











 

 

 

Where 1 1 2 1 3( ) ( )K K K          1( )   

 

3.5 Endemic equilibrium point 

An endemic equilibrium point refers to a steady-state condition in which the disease 

continues to exist within the population at a constant level over time. At this point, the 

number of infected individuals remains stable rather than declining to zero, indicating the 

sustained presence of the disease [24]. This positive and stable state, where the infection does 

not die out but persists within the community, is termed the endemic equilibrium. 

 At the endemic equilibrium point,  

 1 2 3 1 3 2

0

1 2 2

1

3

R
K

K

K

K

K

  



   


 
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0
dS dE dI dT dD dR

dt dt dt dt dt dt
      . 

Let  ** ** ** ** ** ** **, , , , ,S E I T D R   be the endemic equilibrium point. 

Therefore, 
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Substituting into the force of infection of the COVID-19 model, yields the endemic 

polynomial as 

 

 2

10 2 0a a a     ,  

 2

1 20 0a aa     

Where, 

    

     

0 1 1 2 1

3 2     2 0
2 2 1 1 1 1 2 1 1 2 1

a        

               

    

           
 

 

      
    

  

   

1

3 22 /2 3/2
1 1 1 1 1 1

222 1/2
1 1 1

1/2
1 1

      2 1 1 1

a

            


        

    

       

            
  
       
  
   
 

    





 

            

  

2

2 2
1 1 1 1 1 1 1 2 1 1

    1    02 1 0
R

a                   

   

 
           

 

    



 

Whenever 0 1R   

At the endemic equilibrium, 0  , thus, 

The endemic equilibria of the model (1) can be obtained by solving for  in the polynomial 

of the endemic polynomial and substituting the positive values of   into the endemic 
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equilibrium points. The quadratic equation can be analyzed for the possibility of multiple 

equilibria when 
0 1R  . Hence, the following result is obtained. 

Theorem 2  

The model (1) has  

(i) a unique endemic equilibrium if 
2 0a  

0 1R  . 

(ii) a unique endemic equilibrium if 
1( 0a   and 

2 0)a    or 2

1 0 24 0a a a   

(iii) two endemic equilibria if 
2 10, 0a a   and 2

1 0 24 0a a a   

(iv) no endemic equilibrium otherwise. 

 

Therefore, case (ii) of Theorem 2 indicates the potential occurrence of a backward 

bifurcation, a scenario in which a locally asymptotically stable (LAS) disease-free 

equilibrium coexists with a LAS endemic equilibrium, even when the basic reproduction 

number is below one [25, 27]. From an epidemiological perspective, this phenomenon 

implies that the traditional condition of having the basic reproduction number less than one, 

while still necessary, is no longer sufficient to guarantee the elimination of the disease from 

the population. 

 

3.6 Sensitivity Analysis of the covid-19 Model 

"Sensitivity analysis plays a vital role in mathematical modeling by evaluating how changes 

in model parameters affect the resulting outcomes. This process provides valuable insights 

into the reliability and stability of the model’s predictions. In the realm of infectious disease 

modeling, sensitivity analysis is particularly useful for pinpointing the parameters that most 

significantly influence disease transmission dynamics, including factors like infection 

prevalence, the peak of an outbreak, and the effectiveness of control measures [27, 28]. A 

widely used method involves adjusting one parameter at a time while keeping the others 

constant, then observing the corresponding changes in model results. Sensitivity is often 

quantified using measures such as sensitivity coefficients, which represent the partial 

derivatives of outputs with respect to the parameters. Parameters associated with larger 

sensitivity coefficients are considered more impactful in determining disease dynamics and 

are thus prioritized in both intervention planning and model refinement [26]. 

The sensitivity index of the reproduction number of the model with respect to any parameter 

say x  is given by: 

0 0
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R x

x R
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Figure 2. Sensitivity bar chart 

 

The results of the sensitivity analysis reveal that parameters with positive sensitivity 

indices—such as the rate at which exposed individuals progress to becoming infected—

contribute to the increased spread of COVID-19 within the population. Therefore, strategies 

aimed at reducing this progression rate could help curb transmission [24, 25]. On the other 

hand, parameters with negative sensitivity indices such as the treatment rate are associated 

with a decrease in disease prevalence. This implies that enhancing treatment efforts can play 

a significant role in controlling the spread of the virus among the population. 
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4.1. Implementation of fractional Adams–Bashforth–Moulton method  

This study employs the approach developed by [21-22]. To find an approximate solution to 

the fractional tuberculosis model given in equation (6), we applied the fractional Adams–

Bashforth–Moulton method. 

The fractional model (6) is presented  as follows: 

     , , 0 ,a

tD Z t Y t Z t t    
 

 
   

 

 00 , 1,0, ..., , .
nn

Z Z n Z Z   
 (24) 

Where  * * * * * * 6, , , , ,Z S E I T D R R   and   ,Q t Y t  is a real valued function that is 

continuous. 

 Therefore, the following representation of equation (24) can be made using the idea of 

a fractional integral: 
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From  the method described by [6]  and  letting the step size ,g N
N


   with a grid that 

is uniform on   0, .  Where , 0,1,1,... .ct cr c N   Therefore, the fractional order model of  

COVID-19 model presented in (6) can be approximated as :  
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Equations (25) and (26) yield; 
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Table 2. Parameter used for simulations  

Parameter       Value Source 

  10000

59 365
 

Estimated  

  0.5000 [28] 

  0.6000 [28] 

  0.106 Assumed 

1  0.150 [28] 
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1  0.5000 [28] 

2  0.2000 [28] 

  0.9700 [28] 

 

 

4. 2 Fractional order COVID-19 model simulation  

 The results  obtained from numerical simulation of the fractional order COVID-19. 
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Figure 3a examines the effect of the contact rate  and the disease-induced death rate 
1 on 

0R . The surface shows that 
0R  increases as the contact rate  increases, confirming that 

higher contact rates facilitate more transmission. Conversely, as 
1 increases, 0R  decreases 

suggesting that a higher death rate reduces the number of secondary infections by shortening 

the infectious period. However, even at high 1 values, a high  maintains a relatively high 

0R , indicating that high contact can sustain transmission even when mortality is elevated. 

The surface tilts upward as  increases, reinforcing the importance of reducing contact to 

control the epidemic. 

Figure 3b  shows the relationship between the recovery rate  and treatment rate on 0R . From 

the plot, it is evident that 0R   decreases as either   or  increases. The highest values of 0R  

occur when both and   are low, and the lowest values are observed when both parameters 

are high. This implies that increasing the recovery rate and treatment rate effectively lowers 

the reproduction number, thereby reducing the potential spread of the disease. The surface 

curves downward toward higher values of and  , indicating that improving treatment and 

enhancing recovery synergistically contributes to disease control. 

In Figure 4a, the susceptible population is shown to decrease over time, with the rate of 

decline determined by the value of . Higher values of  cause a much steeper drop in 






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susceptible individuals, as more people are exposed to the virus and leave the susceptible 

class, For lower values of , the susceptible population declines slowly, suggesting that fewer 

individuals are becoming infected. This figure highlights the protective effect of lowering 

contact rates, which prolongs the susceptible state and reduces overall exposure, effectively 

flattening the epidemic curve. Figure 4b illustrates the trajectory of the exposed population 

over time for different values of the contact rate . The exposed compartment consists of 

individuals who have had contact with the virus but are not yet infectious. As  increases, the 

curves rise more steeply and peak earlier, reaching significantly higher values. This indicates 

that a higher contact rate leads to a rapid increase in the number of people exposed to the 

virus. Following the peak, the curves decline as individuals transition into the infected class. 

The graph underscores how exposure is extremely sensitive to human interaction levels, with 

small increases in  leading to markedly higher early outbreak sizes. Figure 5a illustrates the 

time evolution of the infected population under varying contact rates . The curves 

demonstrate that as  increases, the infection spreads more rapidly, resulting in a steeper and 

earlier peak. The height of the peak is significantly larger for higher , indicating a much 

more intense outbreak. Conversely, lower contact rates lead to a slower, more controlled rise 

in infections, with a later and lower peak. This behavior highlights how crucial it is to 

manage contact levels, especially early in the epidemic, to prevent overwhelming surges in 

the infected population. 

In figure 5b, the treated classis modeled individuals who are receiving medical care after 

infection. As  increases, more people become infected and subsequently require treatment. 

This is reflected in the curves: higher values of  result in a faster rise, an earlier peak, and a 

higher number of individuals undergoing treatment simultaneously. The pattern indicates a 

direct relationship between contact intensity and healthcare system burden. For lower 

values, the curve is more gradual and the peak is smaller, suggesting a more manageable 

demand on treatment facilities. This graph is vital for assessing healthcare preparedness and 

predicting resource needs under different epidemic scenarios. In Figure 6a, the deceased 

population is modeled as a cumulative outcome over time. The simulation clearly shows that 

higher contact rates lead to significantly more deaths. With increasing  , the curves climb 

steeply and reach higher final values, emphasizing the mortality implications of uncontrolled 

human interaction during an epidemic. The death curves eventually level off, indicating that 

the outbreak subsides, but the total loss of life is far greater for high  scenarios. This figure 

serves as a sobering reminder of the human cost of delayed or insufficient intervention 

strategies. 

Figure 6b, presents  the growth of the recovered population over time. Recovery is a function 

of prior infection, so the total number of recoveries is higher when  is high due to the larger 

number of infections. The curves rise steeply for larger  values and eventually plateau, 

signifying the epidemic’s end as individuals recover and exit the disease cycle. Conversely, 

smaller  values result in fewer recoveries, not due to delayed healing, but because fewer 

individuals became infected in the first place. This cumulative behavior illustrates the long-

term impact of contact on overall disease burden. Figure 7 presents the cumulative number of 
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new COVID-19 cases over time. As expected, this curve is always increasing, reflecting the 

total number of individuals who have contracted the virus. The steepness of the curve is 

strongly affected by : higher values produce faster case accumulation and higher final totals. 

Lower  values yield flatter curves and lower overall case counts. This figure effectively 

summarizes the epidemic’s overall scale and serves as a central indicator of outbreak control 

effectiveness. It reinforces the conclusion that reducing contact rates can drastically limit the 

spread of infection across a population. 

Conclusion: 
This study investigates  a fractional-order model that more accurately reflects the real-world 

dynamics of COVID-19 transmission by incorporating the effects of treatment and the 

memory-like nature of disease spread. Using Caputo derivatives and the Adams–Bashforth–

Moulton method, the model offers a powerful and efficient tool for understanding how the 

virus evolves over time, especially in response to interventions. The analysis confirms that 

increasing treatment efforts and reducing contact rates can significantly lower infection 

levels. Compared to traditional models, this approach provides greater flexibility and realism, 

making it a valuable asset for guiding public health decisions. Beyond COVID-19, the model 

has potential applications for other infectious diseases where past states influence future 

outcomes. 
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