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Abstract 

A fractional-order mathematical model studies the effects of contact rate and recovery rate on 

Malaria transmission dynamics as this paper investigates different epidemiological 

characteristics of malaria infection. We put forward conditions to ensure the model solution 

uniqueness and performs an endemic equilibrium stability assessment through Lyapunov 

function application. Numerical simulations running the fractional Adams–Bashforth–

Moulton method reveal how fractional-order values together with model parameters affect 

malaria control and dynamics. Numerical surface and contour plots reveal that Malaria 

prevalence rises when both contact rates and recovery rate increase but the recovery rate 

enhances the population's resistance against the disease spread. Decreasing contact rate in the 

population results in lower prevalence rates of malaria in the population. 
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1.0 Introduction 

Female anopheles’ mosquitoes spread Malaria through biting humans to transmit the 

plasmodium parasite which lives inside humans as the parasite cause of Malaria. The 

protozoan plasmodium parasite has caused malaria endemics throughout large parts of the 

world since hundreds of thousands of years [1] yet continues to create significant public 

health burdens that primarily affect tropical and subtropical zones of Africa Asia and South 

America [2]. Malaria remains endemic in more than 100 countries across the world where it 

affects more than a third of the entire human population [2]. In 2010 the disease resulted in 

216 million cases along with 655,000 mortalities [2,3]. Furthermore, malaria inflicts 

significant mortality among children under the age of five [4]. An effective and safe vaccine 

exists for treating human malaria but global research continues to create better versions of 

this vaccine [2]. The prevention of malaria relies on both preventive approaches involving 

mosquito population reduction and individual mosquito protection together with anti-malaria 

drug treatments according to [5,6,7,8,2,9]. 

For proper assessment of malaria disease transmission patterns and comparable diseases 

researchers require mathematical modeling as a fundamental tool. Research models enable 

scientists to uncover epidemic reasons while creating strategic defense plans. The 

conventional research models remain inadequate for their failure to incorporate natural 

biological memory effects as well as long-term dependencies within such systems. 

Fractional-order models solved the key drawback that existed in conventional approaches. 

Through non-local characteristics researchers gain access to incorporate memory effects and 

diffusion anomalies for disease transmission analyses [10]. 

Fractional differential equations (FDEs) serve as an improved modeling technique that 

develops integer-order models through a versatile system investigation framework. This 

research establishes a fractional-order mathematical model to study the spread of malaria by 

implementing prevention and treatment controls. Better disease spread representation occurs 

in the model because of its incorporation of fractional calculus memory effect properties. 

Different intervention strategies are simulated through the research to determine the most 

effective methods for malaria prevention while maintaining disease control measures. 

Fractional derivatives, which capture memory and hereditary characteristics in biological 

systems, provide significant advantages in modeling diseases such as malaria. They allow for 

a more comprehensive analysis of infection progression over time and the impact of 

individuals' infection and treatment histories on transmission dynamics. This nuanced 

approach supports the design of more realistic and effective control strategies, tackling 

enduring issues like drug resistance, re-infection, and constraints in healthcare resources. 

Recent advancements in fractional calculus, as emphasized in [11], have highlighted its 

effectiveness in describing the dynamic behavior of various systems. Unlike classical integer-

order models that primarily address local properties, fractional-order models capture global 

system behavior, including memory effects. These models are not only more realistic but also 
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better suited for real-world applications, making them invaluable for understanding and 

controlling the spread of infectious diseases like malaria. 

In biological applications, fractional derivatives such as the Caputo and Riemann-Liouville 

derivatives, which feature singular kernels, are extensively utilized. Additionally, non-

singular kernel derivatives, including the Mittag-Leffler and Atangana-Baleanu operators, 

have gained prominence due to their improved applicability. 

For instance, [11] introduced a fractional-order Sterile Insect Technology (SIT) model to 

control Zika virus transmission, employing the LADM technique to derive infinite series 

solutions converging to exact values. Likewise, [12] investigated Lassa fever dynamics using 

a fractional-order model with a power-law derivative to assess the effects of vaccination and 

treatment on disease spread. 

Several other studies have explored fractional modeling in epidemiology. [13] applied a 

Caputo fractional-order derivative to model COVID-19 control in Nigeria, demonstrating that 

integer-order scenarios yielded higher recovery rates due to vaccination and treatment. 

Similarly, [14] developed a Caputo-based fractional-order compartmental model for soil-

transmitted helminth infections, highlighting greater solution flexibility using LADM. In 

another study, [15] formulated a fractional model for hepatitis C transmission, utilizing the 

Adams-Bashforth-Moulton method to show that reducing contact rates and enhancing 

treatment significantly mitigated disease spread. 

Further research by [16,17] employed fractional approaches to analyze HIV/AIDS and 

Diphtheria dynamics, respectively, underscoring the superior adaptability of fractional 

models compared to classical methods. [18] constructed a fractional model for chlamydia 

transmission, demonstrating through the Adams-Bashforth-Moulton method that lowering 

contact rates and improving treatment and vaccination rates effectively reduced disease 

spread. Additionally, [19] developed an ABC-fractional order model to examine the co-

epidemic dynamics of HIV and COVID-19, while [20] reviewed hepatitis C and COVID-19 

co-infection dynamics, identifying key methodologies and research gaps. 

Lastly, Ullah et al. [21], as referenced by Das et al. [22], applied a hybrid Laplace transform 

and Adomian Decomposition Method to solve fuzzy Volterra integral equations, contributing 

to the theoretical advancement of fuzzy analytical dynamic equations. 

Fractional-order models offer significant advantages due to their flexibility and capacity to 

capture non-local effects. Unlike classical derivatives, fractional derivatives provide a more 

precise representation of real-world phenomena by accounting for memory effects and 

incorporating non-local interactions—characteristics often missing in integer-order models. 

These features make fractional differential equations a valuable tool for tackling complex 

challenges in infectious disease modeling and other scientific fields. 
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Ali et al. [23] explored the stability and existence of solutions for a three-point boundary 

value problem, emphasizing different forms of Ulam stability. Their research employed 

classical nonlinear fractional techniques to analyze the problem, making notable 

contributions to the field. 

The primary objectives of this paper are as follows: 

 Determine the conditions that ensure the existence and uniqueness of solutions for the 

proposed fractional-order model.  

 Analyze the stability of the endemic equilibrium point using the Lyapunov function 

method.  

 Determine numerical solutions using the fractional Adams–Bashforth–Moulton 

method.  

 Carry out numerical simulations to evaluate the model's behavior. 

A review of existing literature on mathematical models and transmission dynamics of malaria 

highlights a gap in studies employing fractional calculus alongside the Adams–Bashforth–

Moulton method to simulate and analyze malaria transmission and control strategies. 

The organization of this paper is as follows: Section 2 outlines the formulation of the 

mathematical model, Section 3 explores its analytical properties, Section 4 presents 

numerical results for the fractional-order model, and Section 5 provides a summary and key 

findings. 

Additionally, this section introduces fundamental concepts and results from fractional 

calculus. The study employs the right and left fractional Caputo derivatives as defined by 

[24,25]. Furthermore, the manuscript emphasizes the applications of fractional calculus in 

modeling real-world problems across various disciplines, including physics, engineering, bio-

mathematics, and other scientific fields. 

Definition 1: Let ( ),f R  then the left and right Caputo fractional derivative of the 

function f  is given by  

 0( ) ( )

m

mc

t t

d
D f t t D f t

dt

  
  

        

 
      

1

0

1
( ) 1

t
mc m

tD f t t f d
m

   


 
 
  

 

The same way  

 
( ) ( )

m

mc

T t t T

d
D f t D f t

dt

  
  

        
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Definition 2: The generalized Mittag-Leffler function  ,E x   for x R  is given by   

 
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which can also be represented as  

     
 , ,

1
3

x
E x xE     

 


 

     1

, ,
4

t

S
E x L t E

S


 


     






  
     

Proposition 1.1. 

Let 
 ( ) Cf R R 

 and , 1 ,R m m      

Therefore, the conditions given below holds: 

1.
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c

t tD I f t f t  
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.
!

k
m k k

t t ok

t
I D f t f t f t

k

  


 

 

2.0 Material and Method 

2.1 Model Formulation 

The rate at which individuals enter the susceptible population is represented as
H so that 

 M  Represents the effective contact rate between susceptible individuals and infected 

Anopheles mosquitoes. We denote  M  Represents the recovery rate of humans infected with 

malaria, 1H  is the progression rates from VME compartment to VMI compartment. M is the 

progression rate from ME compartment to MI  compartment. VM  transmission probability of 

malaria from infected humans to susceptible anopheles mosquitoes. The natural death rate of 

humans is denoted as M . Humans die due to the infectiousness of malaria at the rate M . 
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2.2 Model Flow Diagram 

 
 

 

2.3 Model Equation 
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
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Fig.1: Malaria Model Flow Diagram 
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bm Vm M
VM

H

I

N


  is the force of infection. 

2.4 Table of Model variables and parameters 

VARIABLE DESCRIPTION 

HS  Susceptible Humans 

 ME t  Exposed humans to Malaria 

 MI t  Infected humans with Malaria only 

 MR t   Recovered humans from Malaria only 

 VMS t  Susceptible Anopheles mosquitoes 

 VME t   Exposed Anopheles to infected humans 

 VMI t  Infected Anopheles mosquitoes with Malaria  

Parameter Description 

( )H M   The rate at which humans (Anopheles 

mosquitoes, Aedes aegypti mosquitoes) are 

introduced into the population. 

H  Natural death rate for humans 

M  The likelihood of malaria transmission from 

infected Anopheles mosquitoes to susceptible 

humans. 

M  Malaria disease-induced death rate for humans 

Mb  Mosquito-biting rate for malaria only  

VM  The probability of malaria transmission from 

infected humans to susceptible Anopheles 

mosquitoes. 

H  Progression rate from ME compartment to MI

compartment. 

M  Recovery rate of infected humans with 

malaria only.   

M  Waning rate of infected humans with malaria 

only. 

M  Progression rate from VME compartment to 

VMI  compartment. 

  Compliance rate to the usage of bed net 

 

3.1 Fractional Malaria mathematical model 

In this section, we extend the integer-order malaria model from Eq. (5) by incorporating the 

Caputo fractional derivative operator. This modified model offers greater flexibility 

compared to the classical model in Eq. (5), as the fractional-order formulation allows for 

varying outputs and diverse response behaviors. The fractional malaria model is thus 

presented as follows: 
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1

(1 )C m VM
t H H H M M

H

bm I
D S S A S R

N

  
 


   

 

  2E A E ,c

t H H H M H M MD E S      
 

 1 3E I A A,c

t M M M M M H MD I        
 

 1 ,c

t M M M M H MD R I R     
   (6) 

c vm M VM
t V M M VM

H

bm I S
D S S

N

 
   

 

  .c

t V V VM M M VMD E S E     
 

.c

t V V VM M VMD I E I   
 

Subject to positive initial conditions  

           0 0 0 0 0 0 00 , E 0 , I 0 , 0 , 0 ,E 0 ,I I .H H M M M M M M V V V V VS S E I R R S S E      
 

3.2 Positivity of model solution 

We considered the non-negativity of the initial values 

( ) asN t t



 

 

Secondly, 0if limsup ( ) ,N t



 then our model feasible domain is given by:  

  7, , ,R ,S ,E : ,H M M M M V M M M VM VM VMS E I R S E I R S E I





 
          

 
, so that 

7 ,H R   
 

hence,    is positively invariant. 

If 0 0 0 0 0 0 0, , ,R ,S , , I .M M M V V VS E I E are  non-negative, then the solution of model (6) will be 

non-negative for 𝑡> 0. From Eq. (6), picking the first equation, we have that 

1

C

t H H H H M MD S S A S R       

1( )C

t H H H H M MD S A S R        

1( )C

t H H H M MD S A S R        

But 0  then 
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1( ) 0C

t H H H M MD S A S R      . 

Applying the Laplace transform we obtained; 

 1( ) 0C

t H H HL D S L A S        

       1 0 0,H H H H H H H HS S s S S S s        

 
 

 
1

0 .H
H H H

H H

S
S s S

S



  




 

 

By taking the inverse Laplace transform, we obtained ; 

      ,1 0S . ... 9H Mr H HS t E t     

Now since the term on the right hand side of Eq. (9) is positive, we conclude that 0HS   for 

0t  . In the same way, we also have that 0 , 0, 0, 0,E 0 , I 0.M M M V V VE I R S       that 

is are  positives, therefore, the solution will remain in 7R
 for all  0t   with positive initial 

conditions. 

3.3 Boundedness of fractional model solution. 

The total population of individuals from our model is given by; 

So from our fractional model (6), we now obtain  

 ( ) ( ) ( ) ( ) ( ) ( ), ( )c c c c c c c c

t t H t M t M t M t V t V t VD N t D S t D E t D I t D R t D S t D E t D I t            
 

   ( ) 10c

t HD N t N t   
 

Taking the Laplace transformation of (10) we obtained; 

 ( )c

t HL D N t L N t        
 

 1(s ) (0) ,H H HS N S N N s  




  

 

   

1

(s ) (0) (11)H
H

H H

S
N N

S S S








 



 
 

By taking the inverse Laplace transform of 

Eq. (11) we obtained; 

     ,1 ,r 1(t) (0) 12Mr MrN E t N E t      
 

At t  , the limit of Eq. (12) becomes 

 lim .
t

SupN t




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This means that, if 
0

H

H

N



  then   H

H

H

N t



  which implies that,  HN t  is bounded. 

We now conclude that, this region 
H  , is well posed and equally feasible 

epidemiologically 

3.4 Existence and uniqueness of our model solution 

Let the real non-negative be J, we consider  0,K .L   

The set of all continuous function that is defined on M is represented by  0

eN L with norm as; 

  , t .X Sup K t L 
 

Considering model (6) with initial conditions presented in (8) which can be denoted as an 

initial value problem (IVP) in (13). 

    , ,0 ,c

tD t Z t X t t J     
 

  00 .X X
 

Where                 , , , , ,E , I .H M M M VM VM VMY t S t E t I t R t S t t t represents the classes 

and Z be a continuous function defined as follows; 

 

  

  
  
  
  
  
  

  

 
 

1

2

3

4

5

6

7

(1 ) bm
R .

,
(1 ) bm

( ) E .,E

, I

,R,

,S bm

,E

, I

M VM
H H M M

H

H

M VM
H M M

M
H

M
M M M M M

M M M M M

V M VM VM
H M VM

HV

V

I
S

N
Z t S t

I
SZ t t

N

Z t t E I

Z t tZ t X t I R

Z t t I S
S

NZ t t

Z t t

 
  

 
  

   

  


 

 
   
 

 
  

    
  

    
 

    
   
   
   
 
 
   

 14

VM M VM
M VM

H

M VM M VM

bm I S
E

N

E I


 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

  
 
    

Using proposition (2.1), we have that,  

  0

(1 )
R . ,m VM

H H t H H M M

H

bm I
S t S I S

N

  
  
  

      
    
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  0

(1 )bm
( )E ,M VM

M M t H M M

I
E t E I S

N

  
  

  
      

  
            (15) 

   0 ,M M t M M M M MI t I I E I            

   0 ,M M t M M M MR t R I I R          

  0 .

(1 ) vm M
V V t H VM

bm I
S t S I S

N

  
 

 
    

   

  0

(1 )
( )vm M

V V t VM M VM

bm I
E t E I S E

N

  
  

 
     

   

   0 ( )V V t M VM M VMI t I I E I    
 

We obtain the Picard iteration of (15) as follows; 

 
 

    
1

0 1 1
0

1
, d ,

t

Hn H M M Hn M MS t S t Z S


   




  
 

 

 
 

    
1

0 2 M( 1)
0

1
,E d ,

t

Mn M M M n M ME t E t Z


   




  
 

 

 
 

    
1

0 3 ( 1)
0

1
, d ,

t

Mn M M M M n M MI t I t Z I


   




  
 

 

 
 

    
1

0 4 ( 1)
0

1
,R d ,

t

Mn M M M M n M MR t R t Z


   




  
 

 

 
 

    
1

0 5 V( 1)
0

1
,S d .

t

V V M M n M MS t S t Z


   




  
 

   (16) 

 
 

    
1

0 6 ( 1)
0

1
,E d ,

t

Vn V M M M n M ME t E t Z


   




  
 

 

 
 

    
1

0 6 ( 1)
0

1
, I d ,

t

Vn V M M V n M MI t I t Z


   




  
 

 

Lemma 2. The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution 

   0X .ct A f

 
Using Picard-Lindelof  and fixed point theory, we consider the solution of  

    X X ,Ht S t
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where S is defined as the Picard operator expressed as ; 

   0 7 0 7: , , .H c cS A f R A f R 

 
Therefore 

    
 

    
1

0

1
0 ,X d .

t

H m m m mS X t X t Z


   



  

 
 

which becomes  

     1 2X XH HS t S t

 

 
       

1

1 2
0

1
,X ,X d

t

m m m m m mt Z Z


     


   
   

 

 
       

1

1 2
0

1
,X ,X d .

t

m m m m m mt Z Z


     



  
 

 

 
 

1

1 2
0

X X .
t

m mt d


 



  
 

 

     
 1 2X X .

1
H H

H

S t S t
S




 

 

 

When  
1

1
HS






  , then the Picard operator gives a contradiction, soEq. (6), (7) solution 

is unique.
 

We now transformed the initial value problem of Eq. (13) to obtain; 

   
 

    
1

0

1
0 , d . (17)

t

m m m mX t X t Z X


   



  

 
 

Lemma 1, The Lipchitz condition described from Eq. (14) is satisfied by vector   t,Z X t  

on a set   70,L R  with the Lipchitz constant given as; 

            * * * * * *

1 2 3 1 2 3max , , , , , , ( )M M M M M M M V V M M M                               

Proof. 

   1 1 1, ,H HZ t S Z t S
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1

(1 ) (1 )m VM m VM H
H H M M H H M M

bm I bm I
S R S R

N N

    
     

    
          

   

     * * *

1 1 1 2 3 1 1

(1 ) m VM
H H H H H M M M H H H H

bm I
S S S S S S S S

N

 
      

 
            

 

     * * *

1 1 1 1 2 3 1, ,H H M M M H HZ t S Z t S S S         
 

Similarly, we obtained the following; 

     2 2 1 1,E ,E E E ,M M M M MZ t Z t     

 

     3 3 1 1 1, I , I I I ,A M M M M MZ t Z t       

 

     4 4 1 1,R ,RM M M M MZ t Z t R R    

 

     * * *

5 5 1 1 2 3 1,S ,S ,V M V V V M MZ t Z t S S        

    (18) 

     6 6 1 1,E ,E .V V V V VZ t Z t E E    
 

     7 7 1 1, I , I .V V V V VZ t Z t I I    

 
 Where we obtained  

     1 2 1 2,X ,X X X ,Z t t Z t t   

 

            * * * * * *

1 2 3 1 2 3max , , , , , , ( )M M M M M M M V V M M M                               

(19). 

Lemma 2. The initial value problem (6), (7) in Eq. (19) exists and will have a unique solution 

   0X .ct A f

 
Using Picard-Lindel of and fixed-point theory, we consider the solution of  

    X X ,Ht S t

 
where S is defined as the Picard operator expressed as ; 

   0 7 0 7: , , .H c cS A f R A f R 

 
Therefore 

    
 

    
1

0

1
0 ,X d .

t

H M M M MS X t X t Z


   



  

 
 

which becomes  
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     1 2X XH HS t S t

 

 
       

1

1 2
0

1
,X ,X d

t

M M M M M Mt Z Z


     


   
   

 

 
       

1

1 2
0

1
,X ,X d .

t

H M M M M Mt Z Z


     



  
 

 

 
 

1

1 2
0

X X .
t

M Mt d


 



  
 

 

     
 1 2X X .

1
H H

H

S t S t
S




 

 

 

When  
1

1
HS






  , then the Picard operator gives a contradiction ,  so Eq.(6) , (7) 

solution is unique. 

3.5 The basic reproduction number (R0) and model equilibrium points: 

The disease-free equilibrium points of the model (5) is expressed as: 

   
* * ** * * *(HDFEP) , , ,R ,S ,E , I ,0,0,0, ,0,0 20H M M M V V VS E I

 

 

  
   

    

 , ,E , IM M V VLet n E I
 

.
dn

So that F V
dt

 
 

1 2 3

0

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

M M M

MF

   
 
 
 
 
 
  

  , 

1

2

0 3

4

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0

M

M

M M

K

K

V K

K



 

 
 

 
 
 
 
  

 

Where  1 M HK    ,  2 M M HK      ,  3 M HK    ,  4 M HK    ,

 5 HP   
 

Mathematically, the basic reproduction number is computed as  1

0R FV   where   is 

the dominant Eigen value of the system  1FV 
. Where 0

MR  is the basic reproduction number 

associated with the individuals in the population. 

2

0 2

1 2 3

(1 )M M VM M H M M

H M

b m
R

K K K

      

 



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3.6 Endemic equilibrium point 

We investigated the potential existence of an endemic equilibrium point, which represents a 

positive steady state where malaria remains present within the population. At this 

equilibrium, all model variables maintain nonzero values. 

 * * * * * * *0, 0, 0,R 0 ,S 0 , 0andI 0H M M M VM VM VMS E I E       . 

To analyze the endemic equilibrium point, the model equations are solved based on the force 

of infection affecting the human population. From the fractional malaria model (6), the 

endemic equilibrium state is expressed as follows: 

 ** ** ** ** ** ** **

** , , , , , I ,H M M M VM VM VME S E I R S E  

defined as; 

1**

*

2 3

* **

1 2 3

,
( )

H

H

H

M M M M M

K K

K K

K
S

K  



  


 
 

**
**

**

1

**

2

2 3

3

1

,
( )

M

H

M H

M M M M M

E
K K K

K K K





  


 
 

**
**

** **

1 2

3

3

,
( )

M

H

M H M

M M M M M

I
K K K

K

 

 

  


 
 

**
**

** **

1 2 3

,
( )

M

H

M H M M

M M M M M

R
K K K



 

  

  


 
 

**

**
,

( )

M
V

MVM

MS
 





 

**
**

**

4

,
( ) K

VM
V

M

M M

VM

E










 

**
**

**

4

,
( ) K

VM

M

VM M M

VM M

I














 

Where  1 M HK    ,  2 M M HK      ,  3 M HK    ,  4 M HK    ,
 

Substituting into the force of infection 

**
**

**

(1 ) M VM
M

H

bm I

N

 



 and 

**

*

**

*
,vm

H

VM
Mb I

N

m
   

** **2 **

1 2 3( )M M Mf A A A      

Where 

2

1 4 3 2 3 3 2 3 3( ( ( )))( ( ))H M VM M M M M M MA K bm K K K K K K K               
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2

2 1 2 3 4 3 2 3 3 2 3 3

2 2 2 2 2

1 2 3 4 2 3 3 3 1 2 3

( ( ( )))( ( )))

( ( )) (1 ) (1 ) ,

H M VM M M M M M M

H M M M H M M VM M M M M H M M VM M M

A K K K K bm K K K K K K K

K K K K K K K b m K b m K K K

        

                   

      

     

 

 2 2 2 2 2 2 2

3 1 2 3 4 0(1 R )H M MA K K K K    

0 1 0MR    

Which implies that , the endemic equilibrium point of model (6) is stable.
 

3.7 Global stability analysis at endemic equilibrium state  

The global stability of the equilibrium point is analyzed using the direct Lyapunov method. 

The endemic equilibrium point is considered globally stable when
0 1R  . Epidemiologically, 

this implies that the disease will spread within the population regardless of the initial 

population size. Based on the fractional model (6), 

31 2 M VM M M M
M

II I

N N N

 
     

 

Where  
** * * * * * 7, , ,R ,S ,E , IH M M M VM VM VMP S E I R  , 

then 
1 2 3M M M M M M VMI I I     

 
 

our fractional model now becomes 

1

(1 )C m VM
t H H H M M

H

bm I
D S S A S R

N

  
 


     

  2E A E ,c

t H H H M H M MD E S        

 1 3E I A A,c

t M M M M M H MD I          

 1 ,c

t M M M M H MD R I R       

c vm M VM
t V M M VM

H

bm I S
D S S

N

 
   

 

  .c

t V V VM M M VMD E S E      , 

.c

t V V VM M VMD I E I    (24) 

. 

At equilibrium point Eq. (24) has the following results 
* * *

1 ,M H HS S    * * *

2 1 ,M MA E S * *

3 ,M M MA I E * *

4 1 ,M M MA R R * *

5 2 ,VM VM VA S S
 

* * *

6 .VM VM VM M VMA E S E   = * * *

7 .VM M VM M VMA I E I    

 

Theorem 1.  

Prove that the system Model (24) is globally asymptotically stable at disease free equilibrium, 

moreover, at Ro<1. 

16



Numerical Solution of Fractional order Malaria Model via the Generalized Fractional Adams-Bashforth-

Moulton Approach 

Volume 8 Issue No 03 (2025) Access: https://gphjournal.org/index.php/m 

 

                                             Proof 

We construct the lyapunor function to prove the results, 
1

1 2 1 3 1

3 2 4 2 4 3

5 4 6 4 7 4

( ) (1 )( )

( ) ( ) ( )

( ) ( ) ( )

H M H M M

H M M

M H M

L u S E u u u u

u u u u u u

u u u u u u

  

  

  

      

     

    

 1, 2, 3, 4, 5, 6 7where u u u u u u u  and are positive constant
 

Taking the derivative of the Lyapunov, we have 

1.R   

Choosing the positive constants

 1, 2, 3, 4, 5, 6 7u 1

 

u u u u u u      
 

,and N





then we have 

1

H H hL U N 
 

 1 0,H h HL U N     

Hence, the system (5) is globally asymptotically  

Unstable at the disease free equilibrium and at 1.R     (26) 

4. 0 Fractional order model numerical results  

The fractional-order malaria model was numerically solved using the generalized fractional 

Adams–Bashforth–Moulton method as described in [24,25]. The parameter values utilized in 

the model are provided in Table 1, with varying fractional-order values. (𝛾) are considered 

and simulated. 

 4.1. Implementation of fractional Adams–Bashforth–Moulton method  

The approach outlined in [26,27] is applied in this study. An approximate solution for the 

fractional malaria model in (6) is obtained using the fractional Adams–Bashforth–Moulton 

method. The fractional model (6) is now expressed as follows: 

      ,q , 0 , ... 27c

tD P t Q t t t     

   
 

 00 , 1,0, ...,q,q .
nn

P P n     

Where  
** * * * * * 7, , ,R ,S ,E , IH M M M VM VM VMP S E I R   and   ,qM t t  is a real valued function 

that is continous. 
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Eq. (27) can be therefore be represented using the concept of fractional integral as follows; 

   

 
      

1 1

0
0

0

1
, ... 28

!

nm tn

n

t
P t P t y R y m y dy

n





 



  


   

Using the method described in [24], we let the step size ,g N
N


   with a grid that is 

uniform on   0, .  Where , 0,1,1,... .ct cr c N   Therefore, the fractional order model of  

malaria model presented in (6) can be approximated as :  

 
 

 

 
 

1 0 1 2 3

1 2 3

0

2

, 1
2

n
n n n nH

Hk H M M M M M M VM Hn

H

k
yn n n

M M M H M H VM y

y Hy

Sg
S t S I I I S

N

Sg
dy k I I I S

N





    


    






 
       

   

  
     

    


 

 
 

 

 
 

1 0 1 2 3 2

1 2 3 2

0

2

, 1 ,
2

n
n n n n

M k M M A M S M VM Mn

k
yn n n

M M M M M VM My

y Hy

g S
E t E I I I A E

N

Sg
dy k I I I A E

N





  


  






 
      

   

  
    

    


     …  (29) 

 
 

  

 
  

1 0 1 3

1 3

0

E A A
2

, 1 I A A ,
2

n n n

M k M M M M M M

k

M My M My My MHy

y

g
I t I I

g
dy k E





 


 






        
 

      
 


 

 
 

 

 
  

1 0 1

1

0

2

, 1 ,
2

VM k VM H VM VM M VM

k

M My VM VM M VM VMy

y

g
S t S S S

g
dy k R S S S













     
 

    
 



 

 
 

  

 
  

1 0 2

2

0

2

, 1 ,
2

n n

k V VM M VM

k

V VMy M VM y

y

g
E t E S E

g
dy k S E





 


 






     
 

   
 


 

 
 

 

 
 

1 0

0

2

, 1 ,
2

n

VM k VM M VM M VM

k

M VMy M VM

y

g
I t I E I

g
dy k E I















    
 

  
 


 

Where  
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 
 

 1 0 , 1 1 1

0

1
,

k
yn

k y k M My M My VMy y

y y

S
S t S f I I I S

N
   


 



  
      

   
  

 
 

 1 0 , 1 1 1

0

1
,

k
yn

Mk M y k M My M My y My

y Hy

S
E t E f I I I E

N
  


 



  
     

   
  

 
 

 1 0 , 1 2

0

1
,

k
n

Mk M y k My My

y

I t I f E A I


 



  


 …(30) 

 
 

 1 0 , 1 3

0

1
,

k
n

Mk M y k M My My

y

R t R f I A I


 



   



 

 
 

 1 0 , 1

0

1
.

k
n

VMk M y k M VM VM M VM

y

S t S f S S


 



    


  

 
 

  1 0 , 1 2

0

1
,

k
n n n

VMk y k VM VM M M VM

y

E t E f S E


 



     


  

 
 

 1 0 , 1

0

1
,

k
n n n

VMk y k VM VM M VM

y

I t I f E I


 



   


  

From (29) and (30) obtained; 

  1

1, , 0Kdy K k k y
  

     
 

     
11 1

2 2 1 , 1k y k k y y k
 


 

        
 

1, 1y k 
 

and  

   , 1 1 , 0 .y k

g
f k y k y y k


 




      
   

Numerical Simulation  
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Fig. (1b): Contour plot showing impact of 0R on M  and 

H  
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(1a), it can be observed that the basic reproduction number 
0R  reaches a peak below one (1) 

as the values of H reduces and the value of 
M   increases. This indicates that reducing

H and increasing  
M  will ultimately alleviate the impact of malaria in the population. 

Conversely, if appropriate measures are not implemented, H can exacerbate the prevalence 

of malaria. This is evident from their effect on 
0R . (1b) illustrates the contour plot of 

concerning
0R . Upon examination of the numerical streams within the graph, it is evident that 

the maximum value of 
0R attained by varying these parameters is 0.7, indicating a value 

below unity (1). This observation suggests that augmenting these parameters would not 

trigger a significant outbreak of malaria in the population. 

 

 

 

 (2a) shows a method to display the effect of recovery rate changes on the system  M our 

research focuses on how malaria spreads in people who are susceptible to malaria. It is 

observed that, as the recovery   rate  M when recovery rates increases the number of human 

susceptible increases. (2b) shows a method to display the effect of recovery rate changes on 

the system  M our research focuses on how malaria spreads in people who are exposed to 

malaria. It is observed that, as the recovery   rate  M when recovery rates increases the 

number of Exposed humans increases. 
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to malaria 

 

Fig. (2b): Simulation of Exposed human population to 

malaria 
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(2c) shows a method to display the effect of recovery rate changes on the system 

 M our research focuses on how malaria spreads in people who are infected with malaria. It 

is observed that, as the recovery   rate  M when recovery rates increases the number of 

human infected decreases. (2d) shows a method to display the effect of recovery rate changes 

on the system  M our research focuses on how malaria spreads in people recovered humans 

from malaria. It is observed that, as the recovery   rate  M when recovery rates increases the 

number of recovered humans from malaria increases. 

 

 

 

(2e) shows a method to display the effect of recovery rate changes on the system  M our 

research focuses on how the cumulative new cases of malaria spread. It is observed that, 

when the recovery rates  M  increases the cumulative new case of malaria decreases. (2f) 

shows a method to display the effect of contact rate  H  changes on the system.  Our 
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research focuses on how the cumulative new cases of malaria spread. It is observed that, 

when the contact rate  H  increases the cumulative new case of malaria increases. 

5.0 Conclusions 

This study presents a mathematical model to examine the transmission dynamics and control 

strategies for malaria, incorporating the Caputo fractional derivative. Given the significance 

of fractional modeling, we conducted a comprehensive theoretical analysis of the fractional 

malaria model, focusing on the existence and uniqueness of solutions as well as the stability 

of equilibrium points. For numerical solutions, the fractional Adams–Bashforth–Moulton 

method was utilized. Simulations demonstrated how model parameters and different 

fractional orders of the Caputo operator influence disease incidence. Additionally, we 

investigated the effects of adjusting key parameters, such as the contact rate between infected 

and susceptible individuals and the recovery rate. The findings indicate that lowering the 

contact rate while increasing the recovery rate can effectively reduce malaria prevalence in 

the population. Future research could explore the application of symbolic computing 

techniques, such as those proposed in [27], to solve nonlinear partial differential equations 

and obtain analytical solutions. 
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4.23 Parameter Values and Sources  

Parameter Value Source 

H  1520  Estimated 

V  500 Estimated 

H  0.00004     [9] 

M  0.05     [9] 

H  0.18     [5] 

M  0.8333     [9] 

H  0.0003454     [9] 

Mb  0.1 Estimated 

M  0.43 Estimated 

M  0.0014     [9] 

M  0.3 Estimated 
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