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A B S T R A C T 

The present paper sets out to revisit Fröbel’s play theory, through the open-ended instructional materials, 

designed for pupils’ learning which he bequeathed to us. Many researchers have highlighted the 

advantages of digital or computer concrete materials including DGS manipulatives for teaching and 

learning. In terms of the present study, it is interesting to mention the introduction of Fröbel’s first Gift that I 

adapted in the DGS environment, designed to provide a play-based way of presenting/inquiring about 

geometric objects. The proposed DGS materials can be displayed, inquired about, and managed through 

properly set-up tasks, using linking visual active representations. The dynamic notions (e.g., dynamic point, 

segment, instrumental decoding, hybrid-dynamic objects, etc.), are taken as given and form the specific 

theoretical basis for the required processes. Dynamic interdependencies of tools in various sequential steps 

will be considered for the idea of building DGS Gifts, linked to the pupils’ level of conceptualization. 
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1. Introduction: Digital-Concrete Materials and Fröbel (/Froebel) Gifts  

Manipulatives or concrete representations are objects which are designed to mediate between a particular 

mathematical concept and the way pupils learn the concept. Pupils can manipulate them by touching or moving, 

and thus are concrete means (Baroody, 1989; Dienes, 1960;Van de Walle et al., 2005). In their substantial study, 

Bartolini Bussi, DainaTaimina,& Masami Isoda (2009) report Comenius (1592-1670) and his Didactica Magna 

(1657) on knowledge construction in an extended excerpt, which I have include, as I think it applies to my study:  

Everything must be presented to the senses as much as possible; to wit, the visible to the eye, the audible 

to the ear, odors to the sense of smell, the tastable to the taste, and the touchable to the sense of touch; 

and, whenever something can be grasped by more than one sense at one time, let it be presented to 

them at one time. One may, however, if the things themselves cannot be presented, use representations 

of them, such as models and pictures. […] It is a mistake to let rules in an abstract form go before, and 

afterwards explain them in examples. For the light must go before him for whom it is intended to shine. 

[…](Comenius, 1657, cited in Bartolini Bussi et al., 2009, p. 19) 

In their article (Bartolini Bussi et al., ibid, p. 20) they also mention Friedrich Fröbel (1782–1852), a German 

educator, the founder of the Kindergarten Movement, who designed open-ended instructional materials, called 

the “Gifts”, which could help pupils to progress “from the material to the abstract”. As Ronge & Ronge (1858, 

Introduction, p. xiii) write “Fröbel supplied the children with material, with which, as will be seen from the 

description of the various Gifts, the children can produce an unlimited number of forms”. In the figures below 

(Figure 1) Ronge & Ronge (1858) describe several movements of a soft ball that “is the most convenient and the 

best adapted. In form it is round, like the heavenly bodies and in appearance it combines the idea of the finite 

with the infinite” (p. 1).  In pictures 1 and 2, the ball is suspended on a string and swung at the pupil to help them 

understand the difference between ‘here’ and ‘there’. In pictures 8 and 9, the ball is turning to the left and right 

and the child thus observes the form of the curve. In pictures 17 and 18, the string is shortened, which causes 

the circles to become smaller. In pictures 19 and 24, the ball is allowed to bounce higher or lower on the table. In 

pictures 22 and 23, the string is getting always larger or smaller.  

 

 
Figure 1. Selected pictures from the experiments with the first Gift (Joh & Bertha Ronge, 1858) (adapted) 
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Many researchers highlight the advantages of computer manipulatives including DGS manipulatives for 

teaching and learning (e.g., Clements &Mcmillen, 1996; Clements &Sarama, 2007; Patsiomitou, 2022 a, b). In 

terms of the present study, it is interesting to mention the introduction of Fröbel first Gift that I adapted in the 

DGS environment, designed to provide a mindful play-based way of discovering/constructing geometric objects 

(Papert, 1980).In this article, I shall also present a kind of DGS physical material (e.g., DGS leaves). Fröbel 

proposed the first Gift to be given to infants and very young learners. “His intention was that, through holding, 

dropping, rolling, swinging, hiding, and revealing the balls, the child may acquire knowledge of objects and 

spatial relationships, movement, speed and time, colour and contrast, and weights and gravity” (website [1]).  

 
According to Fröbel “Knowledge is there in the world, and the task is to see the geometrical, mathematical 

structures uniting everything […] Froebel’s theory of play provides the child with a possibility to find knowledge of 

this world system.” (Johansson, 2022, p.73). Fröbel (1885) focuses on the need for interaction between pupil 

/student, teacher and content of mathematical Knowledge (i.e., the “Didactic Triangle”) (e.g., Steinbring, 2005). 

Olive et al. (2010) created an adaptation of the Didactic Triangle (Figure 2) in order to incorporate the use of 

Technology, which I also adapt for the current study. As they write “We add “technology” as a fourth vertex of the 

didactic triangle, transforming it into a 3-D tetrahedron, creating three new triangular faces, each face illustrating 

possible inter-relationships among student, teacher, mathematical knowledge and technology” (Olive et al., 2008, 

p.136). 

 
Figure 2.Transforming the Didactic Triangle into the Didactic Tetrahedron (Olive et al., 2010, p.136) (adapted) 

 

Every Gift created in the DGS environment is underpinned by scientific principles that relate (a) to the 

mathematical concepts that underlie the digital representation and (b) to the instrumental decoding (Patsiomitou, 

2011, 2012, 2021a,b) I used to present these concepts in the DGS environment. This is also the basis behind the 

invention and the creation of the new innovative digital-concrete material. The dynamic notions (e.g., dynamic 

point, segment, instrumental decoding, hybrid-dynamic objects etc.), are taken as given and form the specific 

/particular theoretical basis for the required processes (Patsiomitou, 2008a, b, 2010, 2011, 2012, 2018, 2019a, b, 

2021a, b).The DGS tasks proposed here can also be used by children of students in Primary education.  The 

experience -by using these materials- can become a high-level tool for the conceptions of meanings and the 

development of abstract concepts. It is what Balacheff (2010) in the following excerpt reports as dynamic set of 

conceptions. 

 

[…] I can derive a definition of knowing as the characterization of a dynamic set of conceptions. This 

definition has the advantage of being in line with our usual use of the word “knowing” while providing 

grounds to understand the possible contradictions evidenced by learners’ behaviours and their variable 

mathematical development. A conception is a situated knowing; in other words, it is the instantiation of a 

knowing in a specific situation detailed by the properties of the milieu and the constraints on the relations 

(action/feedback) between this milieu and the subject. (Balacheff 2010, p. 18) 

 
How can we provide pupils with a “journey of knowledge” that is full of experiences through the educational 

design of the material, when this presupposes that the sequence in which the tools are used is properly 

designed? What kind of knowledge must be developed first during the teaching and learning of mathematics if 
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pupils /students are to understand mathematical concepts? This argument recognizes and underlines the force 

of Kant’s argument (1929/1965), that: “there can be no doubt that all our knowledge begins with experience. […] 

knowledge consists in the determinate relation of given representations to an object”.  

 

2. Experiential Learning  

Piaget (1937/1971) considered that students’ thinking becomes more sophisticated with biological maturity. 

Students build on their own intellectual structures as they grow up. Piaget introduced the development of 

student’s thinking in stages, based on the process of equilibration. Von Glasersfeld (1995, p.68) describes 

equilibration as the process “when a scheme, instead of producing the expected result, leads to a perturbation, 

and perturbation, in turn, to an accommodation that maintains or re-establishes equilibrium”. Consequently, 

disequilibration(Piaget, 1937) situations force students to reorganize their cognitive structures, when a 

conceptual structure does not act in line with their expectations. The reorganization of the individual’s schemata 

involves the subprocesses or the mechanisms of accommodation or assimilation (Piaget, ibid.) which correspond 

to modifying the pre-existing schemata and building new schemata in the student’s mind or interpreting the new 

information according to pre-existing schemata. Many times, students face misconceptions (e.g., Nesher, 1987; 

Swedosh, & Clark, 1998) and cognitive conflicts (e.g., Moritz,1998; Watson & Moritz, 2001) (see also, 

Patsiomitou, 2019a, Chapter 4). According to Piagetian theory, a young learner (a child aged 4–5) is not able to 

learn what is presented to them mindfully and deliberately or thoughtfully, since they have not yet acquired the 

required mental standards and qualities. In a constructivist frame, cognitive conflict is a basic component in the 

learning process (Karmiloff-Smith &Inhelder, 1974) and very important for the development of students’ 

mathematical thinking. If the student overcomes this contradiction s/he is able to mental growth. According to 

Piaget &Inhelder (1956), the maturity of the student's thinking plays an important role in helping them reach the 

mental transformations stage. 

Experiential Learning or learning through experience is a theory developed by David A. Kolb (1984). 

According to Kolb & Kolb (2013) the theory, described in detail in Experiential Learning:  Experience as the 

Source of Learning and Development (Kolb, 1984), is built on six propositions that are shared by these scholars:  

 Learning is best conceived as a process, not in terms of outcomes.[…] 

 All learning is re-learning.[…] 

 Learning requires the resolution of conflicts between dialectically opposed modes of adaptation to 

the world.[…] 

 Learning is a holistic process of adaptation to the world. […] 

 Learning results from synergetic transactions between the person and the environment. […]  

 Learning is the process of creating knowledge. (p.6-7) 

According to Kolb & Kolb (2009) “Immediate or concrete experiences are the basis for observations and 

reflections. These reflections are assimilated and distilled into abstract concepts from which new implications for 

action can be drawn. These implications can be actively tested and serve as guides in creating new experiences” 

(p.8) (Figure 3).James Zull (2002, 2011) describes a connection between ELT and neuroscience research, 

depicting a brain in which the sub-processes of experiential learning are related to the processes of brain’s 

functions (Figure 4). As Zull(2002) describes  

“Put into words, the figure illustrates that concrete experiences come through the sensory cortex, 

reflective observation involves the integrative cortex at the back, creating new abstract concepts occurs in 

the frontal integrative cortex, and active testing involves the motor brain. In other words, the learning cycle 

arises from the structure of the brain.” (Zull, 2002, pp. 18-19; 2011 cited in Kolb & Kolb, 2013) 
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Figure 3.  The Experiential Learning Cycle (Kolb, 
1984, cited in Kolb & Kolb, 2009, p.8) 

Figure 4. The Experiential Learning Cycle and Regions 
of the Cerebral Cortex. (Zull 2002, pp. 18-19; 2011, cited 

in Kolb & Kolb, 2013, p.9) 

Kolb & Kolb (2013) depict an amazing idea in a spiral that illustrates the spiraling learning process. As they state 

the spiraling learning "begins with activity, moves through reflection, then to generalizing and abstracting and 

finally to transfer" (Henton, 1996, p. 39, cited in website [2]).  

 

3. Diagrams, DGS diagrams and Duval’s cognitive apprehension 

A crucial issue concerning geometrical meanings relates to the nature of the geometric reasoning students 

develop through problem solving tasks. The visual images that are used in geometry to represent mathematical 

objects, both those we perceive in space and those that exist only in our minds have a dual nature: concrete 

object on the other hand they are also a general devoid of empirical constraints. According to Mesquita (1998, 

pp.185-186) “representing a concept or a situation in geometry, the material trace can suggest two different 

possibilities: (a) ‘finiteness’ in the sense of finite and diversified forms (Gestalten) in its spatio-temporality (b) 

geometrical Form in its ‘ideal objectiveness,’ detached from the material constraints linked to external 

representation.”  

 

Chen & Herbst (2005) investigate the duality of diagrams “being at the same time representations of concepts 

and actual objects”. Diezmann (2005, p.281) also states that diagrams have three key cognitive advantages in 

problem solving: “[…] (a) Diagrams facilitate the conceptualization of the problem structure, which is a critical 

step towards a successful solution (van Essen &Hamaker, 1990). (b) Diagrams are an inference-making 

knowledge representation system (Lindsay, 1995) that has the capacity for knowledge generation (Karmiloff-

Smith, 1990). (c) Diagrams support visual reasoning, which is complementary to, but differs from, linguistic 

reasoning (Barwise &Etchemendy, 1991).” Vergnaud (1998) in his study “A Comprehensive Theory of 

Representation for Mathematics Education” argues that “representation is not a static thing but a dynamic 

process that borrows a lot from the way action is organized. […].” (p. 167). Vergnaud (1998) “opposes the 

metaphor of the Aristotelian triangle because the metaphor of triangle is too static and does not offer any insight 

for the representation of relationships” (Mainali, 2021) and states (Vergnaud, 2009, p.93): 

“Representation is a dynamic activity, not an epiphenomenon that would accompany activity without 

feeding it or driving it. […] it organizes and regulates action and perception; at the same time, it is also the 

product of action and perception. Therefore, the operational form of knowledge must be considered as a 

component of representation. […]”. 

The dynamic diagrams/or dynamic representations constructed in a DGS environment result from 

sequences of primitives expressed in geometrical terms chosen by the user. 
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Figure 5. An adaptation to the metaphor of the (Aristotelian) triangle (see also, Vergnaud, 1998, p. 168, cited in 

Patsiomitou, 2019a, Chapter 2) 

Dynamic diagrams have two important characteristics: (a) they are new mathematical objects that map a 

temporal past of specification and definition onto a present graphical configuration and also onto a future 

potential for manipulation and possible constrained response. Shape becomes infinitely plastic within the 

software (Jackiw, 2006) (b) they acquire quasi-independence of the user once they have been created: when the 

user drags one element of the diagram, it is modified according to the geometry of its constructions rather than 

the wishes of the user (Laborde, 2005).  

Duval (1995, p.145-147) provides an analytic framework for analysing the semiotics of geometric objects as 

theoretical and abstract objects. Duval identifies or distinguishes four types of cognitive apprehension, namely 

how we perceive (with our sensory system) and conceive (in our mind) a figure or a diagram. These types of 

cognitive apprehension are the following (see also Deliyianni et al., 2009; Forsythe, 2014; Jones, 1998; 

Patsiomitou, 2011, 2012, 2018, 2019a, b):  

perceptual apprehension: this is what is recognised at first glance; how one perceives a figure, what are 

the sub-figures in the figure; in other words what one can view in the figure or perceive in regard of the 

objects that belong to the figure.  

sequential apprehension: how one understands the order of the construction steps; what are the 

geometric properties and definitions used for the construction of the figure. Using a DGS or computing 

environment generally a student can enrich his understanding of the different paths that can be used for 

the same construction of a figure (see also Gomes and Vergnaud, 2004, cited in Forsythe, 2014, p.40) 

discursive apprehension: how one verbalizes the construction steps and explicate/interpret the 

construction steps using reasoning; “the definition of a geometrical object and a description of its 

construction are part of discursive apprehension” (Forsythe, 2014, p.40) 

operative apprehension, how one operates the figure “which involves manipulating the figure mentally or 

physically to provide an insight into a problem” (Jones, 1998, p. 31). “Operative apprehension depends on 

the various ways of modifying a given figure: the mereologic, the optic and the place way” (Deliyianni et 

al. 2009, p. 697). 

Duval (1999) in his study “Representation, vision and visualization: cognitive functions in mathematical thinking. 

Basic issues for learning”, describes three kinds of operations delimited by how a given figure is transformed: 

“The mereologic way: you can divide the whole given figure into parts of various shapes [...] and you can 

combine these parts in another whole figure or you can make appear new subfigures. [...] We call 

«reconfiguration» the most typical operation. 

The optic way: you can make a shape larger or narrower, or slant, as if you would use lenses. In this way, 

without any change, the shapes can appear differently [...]. 

The place way: you can change its orientation in the picture plane. It is the weakest change. It affects 

mainly the recognition of right angles, which visually are made up of vertical and horizontal lines” (Duval, 

1988, pp. 61-63; 1995, p.147).  
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The mereologic, the optic way and the place way constitute what Duval defined as “the operative 

apprehension” of the figure, which according to him differs from the perceptual apprehension “because 

perception fixes at the first glance the vision of some shapes and this evidence makes them steady” (p.19) [...] 

Operative apprehension is [also] independent of discursive apprehension” (p.21). According to Duval 

“Visualization consists only of operative apprehension [and]…operative apprehension is independent of 

discursive apprehension” (1999, p. 21). 

 

4. The design of the first Fröbelian DGS-Gift  

"A string is fastened to the ball; it is swung round; the child is taught to observe the two forces employed. 

The circular motion is interrupted, and the child perceives that it is still held to the centre. It is again swung and 

allowed to fly from the centre; the child is induced to observe the differences of the motions, and led to perceive 

the relation between the centrifugal and the centripetal force"(Ronge & Ronge, 1858, p.6) 

 

In the diagram on the left, a “ball” is dynamically “tied” at a 

point and can be moved to right and left but also in a circular line. 

In the software, movement is achieved using two action buttons 

which move points on an auxiliary circle. This circle can be hidden 

for elementary school pupils, or not for junior high school students. 

The action will help students to visualize the way the points are 

moved as a covariation action. 

 

 

We can propose to a student that they press the first button 

and observe the ball’s clockwise movement. We can connect the 

interior of the ball to a trace, so the ball’s movement is mapped 

onto the working area on the desktop. Pressing the next button 

enables counter clockwise movement. Students can observe the 

ball moving and the curved or circular arcs as they are formed 

simultaneously. Traces of this object are important for 

understanding basic geometric concepts such as a semicircle, a 

circle or a sector. 

 

In the diagram on the left, we can stop the movement of the 

ball when the angle of the sector is equal to 270°. Our aim is for 

the students to visualize the different angles formed by the arcs of 

the ball's trajectory. The ultimate goal is to form a circle when the 

ball returns to its place. 

If we choose to capture the arcs traced left by the ball as 

well the radius-segment, then a circular sector is formed; this is a 

very important geometric concept. 

 
Figures 6 a, b, c. Moving the ball in a cyclical process using action buttons 

 

Continuing the movement, a semicircle is captured as an extension of the concept of the circular sector 

and the circle. These movements help the students perceive the concept of area. If we choose to shorten the 
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radius, then the students can observe a smaller circular sector. With the trace tool, we can connect the point 

of intersection to the diametrically opposite point of the circle. The movement creates different arcs--the semi-

circular arc, as well as the circle (Figure 7). 

 

 
Figure 7. Screenshots of the ball’s movement in the DGS environment with the traces  

 thus produced  

 

In figures 8 -10, the circular object (the ball) can go up and down or right and left, simulating the 

movement of a ball. Traces capture this movement on the screen, providing the visualization of concepts 

such as right-left and up-down. 

 

The segment (a simulation of a string) can be lengthened and the size of the ball can be transformed. Its qualities 

(e.g., colour, size) are such as to excite a pupil’s curiosity. The task-game can be used to impress the pupil and 

increase its gratification while observing the different movements (Ronge & Ronge, 1858, p. 4). 

 

 
Figure 8. The ball is moving up and down. 
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Figure 9. The ball is moving back and forth 

 
Figure 10. Transforming shapes in the DGS environment 

 

Abraham Arcavi (2003) in his study “The role of visual representations in the learning of mathematics” introduces 

the notion of visualization as a way we can “see” what is unseen. He makes a metaphor and reports examples of 

the way we can “see” what is unseen through the use of technology (for example, the zoom function or the 

animation of objects in computer environments is a way to “see” the unseen). According to Arcavi (2003) “In a 

more figurative and deeper sense, seeing the unseen refers to a more “abstract” world, which no optical or 

electronic technology can “visualize” for us. Probably, we are in need of a “cognitive technology” (in the sense of 

Pea, 1987, p. 91) as “any medium that helps transcend the limitations of the mind … in thinking, learning, and 

problem-solving activities.” Such “technologies” might develop visual means to better “see” mathematical 

concepts and ideas” (p.26). 
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Figure 11 a,b,c,d. Playing with “leaves” in GSP (Patsiomitou, 2005, in Greek) 

In the GSP file, I have created a simulation of a leaf (Figures 11a, b, c, d) as the resultant of a circular 

arc and its reflection. By using parameters to scale it, I have reproduced it. We can also move these leaves 

away from one another or bring one leaf closer to another. Such observations can help a child develop strong 

experience in developing mathematical concepts and, subsequently, the schemata relating to those 

concepts. For example: a leaf consists of two circular arcs, the leaves have an axis of symmetry, an angle is 

formed between the branches of two leaves which is not always the same in all branches, etc. 

 

The modeled tasks are presented in the DGS environment. The pupils will be motivated to manipulate 

the dynamic objects and to compare them with the real-world objects, physically or in their minds in order “to 

bridge connections between the pure world of mathematics --with fixed solutions and “perfect” forms-- and 

the more messy, ambiguous, or subjective world of experience” (Sinclair & Jackiw, 2007). In every situation, 

the experience with a real or simulated object will play a major role for the construction of students’ 

knowledge. The most important thing is “the construction of dynamic interdependencies between dynamic 

objects (or hybrid dynamic objects) diagrams or sections that lies at the heart of the construction of 

instrumental learning paths (Patsiomitou, 2021a, p.17). As Stahl (2013)argues “A major goal of having 

students experience dynamic geometry is for them to gain an understanding of dynamic dependencies. 

Dynamic dragging can be used to provide a visual acquaintance with behaviors resulting from hidden 

dependencies.” (Stahl, 2013, p.81)  

 

5.   Conclusion 

The construction of the dynamic circles, semicircles or curves created using the traces in the DGS 

environment is very important for the development of schemata for these concepts. The Fröbelian DGS-Gift 

can be used by infants, but also by children aged 6-7 in order to extend their conception of the underlined 

meanings to a higher and more abstract level. It also can be presented in correlation with Gift 11, in which 

rings, circles and half-circles, or quarter-circles of three different sizes can be used to create several shapes. 

As Maria–Kraus Boelte& John Kraus (1877) in their book “The Kindergarten Guide” report “after the child has 

become familiar with the straight line […] the child becomes familiarized with  the properties of the curved 

lines, by laying them in different positions and arranging them in various ways and combinations, thus 

producing richly varied form”. 

 

Constantly, changing the diagram through the use of dynamic interaction techniques (Sedig& Sumner, 

2006; Sedig, & Liang, 2008; Patsiomitou, 2010) leads to a sequence of geometrically variable transformed 

diagrams. The use of different techniques in the construction of a geometric dynamic diagram causes 

different types of interactions. These interactions thus cause different representations on screen, which in 

turn lead the students to form different mental representations and to translate these verbally in accordance 

10



Digital-Concrete Materials: Revisiting Fröbel in Sketchpad Tasks 

©2022 Published by GLOBAL PUBLICATION HOUSE |International Journal of Educational Research| 

 

with how they understand them. Steffe&Tzur (1994) in their article “Interaction and Children’s mathematics” 

argued that learning “occurs as a product of interaction [and] the teacher’s interventions is essential in 

children's learning.” (p. 44). The students’ mental representations that take shape can bring about 

corresponding mental transformations which may stimulate a mental experimental transformation in the 

diagram, even if it is not realized with material means (i.e., the diagrams on the software screen), but in the 

student’s imagination. Students are frequently able to predict this transformation on the diagram, which they 

adapt to the particular case.  

 

Through the dynamic diagrams it is important for the pupils to develop a strong intuition of the mathematical 

concepts that they will learn them later in an abstract level. Following Fischbein (1980) “an intuitive 

representation of a phenomenon seems to be […] only a substitute before a complete formal understanding 

becomes possible” (p.10).Furthermore, “play-based math activities have a positive effect on personal-social, fine 

motor, language, and gross motor developments of children” (Taner Derman et al., 2020, p. 1). As they argue: 

“early childhood educators should select purposeful and meaningful learning activities, such as play-based math 

activities for children” (p. 10). 
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