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Abstract:  

Trypanosomiasis remains a critical vector-borne disease burden, especially in sub-Saharan African communities 

where tsetse fly populations thrive and healthcare infrastructure remains limited. Conventional integer-order 

mathematical frameworks frequently inadequately represent the hereditary characteristics and intricate 

transmission patterns inherent in vector-borne disease systems. This research presents a fractional-order 

mathematical framework for examining the epidemiological characteristics of trypanosomiasis transmission, 

with particular focus on how treatment interventions at different disease stages affect overall transmission 

dynamics. The primary goal is to explore how variations in treatment efficacy rates and vector-human contact 

patterns influence disease persistence and spread within affected populations. The framework employs fractional 

derivatives to more accurately capture the non-Markovian properties of infection progression and immune 

response mechanisms. The computational results further reveal that strategically implemented treatment 

protocols can dramatically reduce infection prevalence, potentially driving the system toward disease 

elimination scenarios. The innovation of this work centers on applying fractional calculus to trypanosomiasis 

transmission modeling, an approach relatively unexplored in this epidemiological context, while simultaneously 

incorporating multi-stage treatment interventions and natural immunity waning processes. The model 

demonstrates superior precision in representing temporal disease progression compared to classical integer-order 

approaches. This investigation underscores the utility of fractional-order modeling in vector-borne disease 

research and emphasizes the critical importance of strengthening treatment capacity and vector control measures 

to effectively manage and eliminate trypanosomiasis transmission in endemic regions. 
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1.0 Introduction 

Human African Trypanosomiasis (HAT), commonly known as sleeping sickness, is a vector-

borne parasitic disease transmitted by tsetse flies (Glossina species) that poses a significant 

public health threat across sub-Saharan Africa Franco et al. (2018). The disease is caused by 

two subspecies of Trypanosoma brucei: T. b. gambiense, which causes chronic infection 

primarily in West and Central Africa, and T. b. rhodesiense, which causes acute infection in 

East and Southern Africa Büscher et al. (2017), Kennedy et al. (2019). HAT affects 

approximately 70 million people living in at-risk areas across 36 countries in sub-Saharan 

Africa, with an estimated 300,000 to 500,000 people currently infected W.H.O (2023). The 

disease progresses through two distinct stages: the hemolymphatic stage, where parasites 

multiply in subcutaneous tissues, blood, and lymph, and the meningo-encephalitic stage, 

where parasites cross the blood-brain barrier and invade the central nervous system 

Steverding (2008). Without proper treatment, HAT is invariably fatal, making early diagnosis 

and intervention critical for patient survival Malvy, and Chappuis, (2011). Despite significant 

progress in reducing HAT incidence through enhanced surveillance, vector control, and 

improved treatment protocols, the disease remains endemic in many rural communities with 

limited access to healthcare infrastructure Simarro et al. (2012), Pandey et al. (2015). The 

World Health Organization has set ambitious targets for HAT elimination as a public health 

problem by 2030, necessitating innovative approaches to understand transmission dynamics 

and optimize control strategies W.H.O (2020). Mathematical modeling serves as an essential 

tool for analyzing disease transmission patterns, evaluating intervention effectiveness, and 

guiding policy decisions in infectious disease control Heesterbeek et al. (2015), Rock et al. 

(2015). 

Traditional mathematical models using integer-order differential equations have provided 

valuable insights into HAT transmission dynamics but often fail to capture the complex 

biological processes inherent in host-vector-parasite interactions Anderson, and May (1991). 

These conventional models inadequately represent the memory effects, hereditary properties, 

and long-term dependencies that characterize real biological systems Diethelm (2010),. 

Fractional-order mathematical modeling has emerged as a powerful alternative that addresses 

these limitations by incorporating non-local characteristics and memory effects through 

fractional derivatives Podlubny (1999), Kilbas (2006. Fractional differential equations 

(FDEs) offer enhanced modeling capabilities that extend beyond classical integer-order 

approaches by providing a more flexible framework for investigating complex dynamical 

systems Baleanu et al. (2012). These models utilize fractional derivatives, such as Caputo and 

Riemann-Liouville operators, which possess singular kernels and excel at capturing memory 

effects in biological processes Caputo and Fabrizio (2015). Additionally, non-singular kernel 

derivatives, including Mittag-Leffler and Atangana-Baleanu operators, have gained 

prominence due to their superior applicability in modeling real-world phenomena Atangana, 

and Baleanu (2016). Recent advances in fractional calculus applications to epidemiological 

modeling have demonstrated significant improvements in describing disease transmission 

dynamics across various infectious diseases Sun et al. (2018). For instance, Atangana and 

Araz (2020) developed a fractional-order model for COVID-19 transmission using Atangana-

Baleanu derivatives, showing enhanced prediction accuracy compared to classical models. 

Similarly, Baleanu et al. (2020) applied fractional calculus to analyze HIV/AIDS dynamics, 

demonstrating superior model flexibility and realistic behavior representation. Khan et al. 

(2020), investigated malaria transmission using Caputo fractional derivatives, revealing that 

fractional-order models better captured the complexity of host-vector interactions and long-

term epidemic trends.  
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The Adams-Bashforth method has proven particularly effective for solving fractional 

differential equations in epidemiological applications, providing stable and accurate 

numerical solutions Diethelm et al. (2002) Diethelm and Ford (2004), pioneered the 

application of fractional Adams-Bashforth-Moulton methods for solving nonlinear fractional 

differential equations, establishing theoretical foundations for their implementation. Pinto and 

Machado (2013) utilized the Adams-Bashforth method to model fractional-order dynamics in 

tuberculosis transmission, demonstrating improved convergence properties and 

computational efficiency. More recently, Ahmed and El-Sayed (2007) applied the Adams-

Bashforth method to analyze hepatitis B virus dynamics using fractional calculus, showing 

enhanced model performance in capturing disease progression patterns. Several studies have 

successfully employed the Adams-Bashforth method in fractional-order disease modeling 

applications. Arafa et al. (2012) used this approach to investigate fractional-order HIV 

infection models, demonstrating superior numerical stability compared to other methods. 

Sweilam et al. (2007) applied the Adams-Bashforth method to solve fractional epidemic 

models for influenza transmission, revealing enhanced accuracy in long-term predictions. 

Additionally, El-Sayed et al. (2007) utilized this method to analyze fractional SIR models for 

measles dynamics, showing improved computational performance and solution convergence. 

Further research by Odibat and Shawagfeh (2007) employed the Adams-Bashforth method 

for solving fractional-order systems in epidemiology, emphasizing its effectiveness in 

handling complex nonlinear dynamics. Momani and Odibat (2007), demonstrated the 

method's applicability to fractional predator-prey models with epidemiological implications, 

while Hashim et al. (2009) applied it to fractional-order models of infectious disease 

outbreaks with vaccination strategies. These studies collectively highlight the Adams-

Bashforth method's versatility and reliability in fractional-order epidemiological modeling. 

The integration of fractional calculus with the Adams-Bashforth method offers significant 

advantages for modeling complex biological systems like HAT transmission (2010). This 

approach provides enhanced computational stability, improved solution accuracy, and better 

representation of memory effects inherent in disease transmission processes Daftardar-Gejji, 

and Jafari, (2006). Furthermore, fractional-order models solved using Adams-Bashforth 

methods demonstrate superior performance in capturing long-term dependencies and non-

local interactions that characterize vector-borne disease dynamics Garrappa, (2018). Recent 

applications of fractional-order modeling to vector-borne diseases have shown promising 

results. Mandal et al. (2021) developed a fractional model for dengue fever transmission 

using Caputo derivatives and Adams-Bashforth numerical methods, revealing enhanced 

prediction capabilities for epidemic patterns. Similarly, Kumar et al. (2017) applied fractional 

calculus to chikungunya virus dynamics, employing Adams-Bashforth-Moulton methods to 

demonstrate improved model stability and biological realism. These studies underscore the 

potential of fractional-order approaches in understanding and controlling vector-borne 

disease transmission. 

The primary objectives of this study are to: (1) develop a comprehensive fractional-order 

mathematical model for HAT transmission incorporating both human and tsetse fly 

population dynamics; (2) analyze the model's mathematical properties, including existence, 

uniqueness, and stability of solutions; (3) implement the Adams-Bashforth method for 

numerical solution of the fractional differential equation system; and (4) conduct sensitivity 

analysis and numerical simulations to evaluate the effectiveness of various control strategies. 

This research addresses a significant gap in the literature by combining fractional calculus 

with the Adams-Bashforth method to model HAT transmission dynamics comprehensively. 

The study contributes to the growing body of knowledge on fractional-order epidemiological 
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modeling while providing practical insights for HAT control and elimination strategies. The 

manuscript is organized as follows: Section 2 presents the fractional-order model 

formulation, Section 3 analyzes mathematical properties and stability, Section 4 discusses 

numerical methods and simulation results, and Section 5 provides conclusions and 

recommendations for future research. 

Definition 1:  

Let ( ),f R  then the left and right Caputo fractional derivative of the function f  is given 

by  

 0( ) ( )
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Definition 2: The generalized Mittag-Leffler function  ,E x   for x R  is given by   
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which can also be represented as  
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Proposition 1.1. 

Let  ( )f R C R   and , 1 ,R m m      

Therefore, the conditions given below holds: 

1.    
0

c

t tD I f t f t     
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2.0 Model Formulation 

 

Figure 2: Schematic Diagram of the trypanosomiasis model 

2.1 Model Description  

The rate at which individuals enter the susceptible human population is represented as 
H  so 

that 
T  represents the effective contact rate between susceptible individuals and infected 

tsetse flies. We denote 
T  represents the rate of re-susceptibility of recovered humans from 

trypanosomiasis, 
T  is the progression rate from 

TE  compartment to HTI  compartment. 
HT  

is the progression rate from HTI  compartment to 
MTI  compartment. 

TV  transmission 

probability of trypanosomiasis from infected humans to susceptible tsetse flies. The natural 

death rate of humans is denoted as H . Humans die due to the infectiousness of 

hemolymphatic trypanosomiasis at the rate 
HT . The parameter 

HT  represents the treatment 

rate for humans infected with hemolymphatic trypanosomiasis, while MT  denotes the 

treatment rate for humans infected with meningo-encephalitic trypanosomiasis. The recovery 

rate from trypanosomiasis treatment is represented by T , which transitions individuals from 

the treatment compartment 
TT  to the recovered compartment 

TR . Disease-induced mortality 

occurs at different stages, with 
MT  representing the death rate for meningo-encephalitic 

trypanosomiasis and T  representing the death rate for individuals in the treatment class. For 

the tsetse fly population dynamics, TV  represents the recruitment rate of susceptible tsetse 

flies into the vector population. The natural mortality rate of tsetse flies is denoted as 
TV , 

while TV  represents the disease-induced death rate for infected tsetse flies. The parameter 
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TV  describes the progression rate from exposed tsetse flies (
TVE ) to infected tsetse flies (

TVI

). The biting rate of tsetse flies, which determines the frequency of contact between vectors 

and humans, is represented by 
Tm . 

The force of infection parameters play crucial roles in disease transmission dynamics. For 

human infection, T T TV
T

H

m I

N


   represents the per capita rate at which susceptible humans 

acquire trypanosomiasis infection from infected tsetse flies. Conversely, for vector infection, 

( )T TV HT MT T
TV

H

m I I T

N




 
  represents the per capita rate at which susceptible tsetse flies 

become infected through contact with infected humans in various disease stages. The total 

human population 
HN  serves as the normalization factor, ensuring that the force of infection 

appropriately scales with population density. 

2.2 Model Equations 

The differential equations for the trypanosomiasis transmission dynamics in the human and 

vector population are: 

H
H T H H H T T

dS
S S R

dt
        
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T H T H T
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dt
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The force of infection for trypanosomiasis in the human population: 

 T T TV
T

H

m I

N


   

The force of infection for trypanosomiasis in the tsetse fly population:  

( )T TV HT MT T
TV

H

m I I T

N




 
  

where 
H H T HT MT T TN S E I I T R       is the total human population. 

3.0 Fractional Trypanosomiasis mathematical model 

In this section, we extend the integer-order trypanosomiasis model from the differential 

equations by incorporating the Caputo fractional derivative operator. This modified model 

offers greater flexibility compared to the classical model, as the fractional-order formulation 

allows for varying outputs and diverse response behaviors. The fractional trypanosomiasis 

model is thus presented as follows: 

H

C

t H T H H H T TD SS S R         
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3.1 Positivity of model solution 

We considered the non-negativity of the initial values ( ) asH

H

N t t



   

Secondly, 
0if , limsup ( ) ,N t
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so that 9 ,H R     

hence,   is positively invariant. 

If 
0 0 0 0 0 0 0 0 0, , , , , , , ,H T HT MT T T TV TV TVS E I I T R S E I  are non-negative, then the solution of model (6) 

will be non-negative for 0t  . From Eq. (6), picking the first equation, we have that 
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Applying the Laplace transform we obtained:  ( ) 0C

H T H HtL D S L S         

       1 0 0T H Hs SH s s SH S s        

 
 

 
1

0H

H

s
SH s S

s T



  




 

 

By taking the inverse Laplace transform, we obtained:  

      ,1 0                                       7H T H HS t E t S

      

Now since the term on the right hand side of Eq. (7) is positive, we conclude that 0HS   for 

0t  . In the same way, we also have that  
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0, 0, 0, 0, 0, 0, 0, 0T HT MT T T TV TV TVE I I T R S E I         

 that is are positives, therefore, the solution will remain in 9R   for all 0t   with positive 

initial conditions. 

3.2 Existence and uniqueness of our model solution 

Let the real non-negative be  J, we consider  0,L K . 

The set of all continuous functions that is defined on  M  is represented by  0

eN L  with norm 

as;  

  sup , .X K t t L  Considering model (6) with initial conditions presented in (8) which 

can be denoted as an initial value problem (IVP) in (13).  
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Using proposition (2.1), we have that,  
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   0                                                             ( ) ,   (9 ) T T t T H T H TE t E I S E        
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We obtain the Picard iteration of (9) as follows;  
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Lemma 1. The Lipschitz condition described from Eq. (10) is satisfied by vector   ,Z t X t  

on a set   90, L R  with the Lipschitz constant given as;  
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Similarly, we obtained the following;  
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3.3 The basic reproduction number ( 0

TR ) and model equilibrium points: 

The disease-free equilibrium points of the trypanosomiasis model is expressed as: 
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Where  1T T HK      2T HT HT HT HK          3T MT MT HK       

 4T T T HK        5T TV TVK      6T TV TVK     

Mathematically, the basic reproduction number is computed as  1

0R FV   where   is the 

dominant Eigen value of the system  1FV  . Where 0

TR  is the basic reproduction number 

associated with the individuals in the population. 
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4.0 Fractional order model numerical results 

The fractional-order trypanosomiasis model was numerically solved using the generalized 

fractional Adams–Bashforth–Moulton method as described in Diethelm and Ford, (2004), 

Pinto,and Machado, J.A.T. (2013),  The parameter values utilized in the model are provided 

in Table 1, with varying fractional-order values. (γ) are considered and simulated. 

4.1. Implementation of fractional Adams–Bashforth–Moulton method 

The approach outlined in Ahmed, and El-Sayed (2007), Arafa et al. (2012) is applied in this 

study. An approximate solution for the fractional trypanosomiasis model is obtained using the 

fractional Adams–Bashforth–Moulton method. The fractional trypanosomiasis model is now 

expressed as follows:  

Page No. 159 



Numerical Methods for Addressing Fractional Order Trypanosomiasis Through the Generalized Adams-Bashforth-Moulton 
Approach 

Volume 08 Issue No 10 (2025) Open Access: https://gphjournal.org/index.php/as 

 

 

      , ,0 ,                                                                  13c

tD P t Q t q t t     

       00 , , , , 1,0, , ,..., , .
n n

P P n q q     

 

Where  * * * * * * * * * 9, , , , , , , ,H T HT MT T T TV TV TVP S E I I T R S E I R   and   ,Q t q t  is a real valued 

function that is continuous. 

 

Eq. (13) can be therefore be represented using the concept of fractional integral as follows: 
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Using the method described in [24], we let the step size , , ,g N
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uniform on  0, .  Therefore, the fractional order trypanosomiasis model can be 

approximated as: 
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Table 1: Parameter Values and Sources 

Parameter Description Value Units Source 

H  Recruitment rate of humans 0.02 day⁻¹ Gervas et al. (2018) 

TV  Recruitment rate of tsetse flies 0.05 day⁻¹ Rock et al. (2019) 

Tm  Biting rate of tsetse flies 0.33 day⁻¹ Lord et al. (2018) 

T  Contact rate between susceptible 

humans and infected tsetse flies 

0.2 dimensionless Funk et al. (2013) 

TV  Contact rate between susceptible 

tsetse flies and infected humans 

0.15 dimensionless Hargrove et al. 

(2012) 

T  Rate of re-susceptibility of recovered 

humans from trypanosomiasis 

0.005 day⁻¹ Checchi et al. 

(2018) 

H  Natural death rate of humans 0.000045 day⁻¹ World Bank (2023), 

TV  Natural death rate of tsetse flies 0.03 day⁻¹ Hargrove (2004), 

T  Progression rate from exposed to 

hemolymphatic trypanosomiasis 

0.143 day⁻¹ Jamonneau et al. 

(2012) 

HT  Progression rate from hemolymphatic 

to meningo-encephalitic stage 

0.033 day⁻¹ Kennedy (2013) 

HT  Treatment rate for hemolymphatic 

trypanosomiasis 

0.1 day⁻¹ Franco et al. (2014) 

MT  Treatment rate for meningo-

encephalitic trypanosomiasis 

0.067 day⁻¹ Büscher et al. 

(2017) 

T  Recovery rate from trypanosomiasis 

treatment 

0.2 day⁻¹ Priotto et al. (2009) 

TV  Progression rate from exposed to 

infected tsetse flies 

0.125 day⁻¹ Aksoy et al. (2003) 

HT  Disease-induced death rate for 

hemolymphatic trypanosomiasis 

0.01 day⁻¹ Odiit, et al. (2004) 

MT  Disease-induced death rate for 

meningo-encephalitic trypanosomiasis 

0.05 day⁻¹ Blum et al. (2006) 

T  Disease-induced death rate for 

trypanosomiasis treatment class 

0.001 day⁻¹ Simarro et al. (2012) 

TV  Disease-induced death rate for 

infected tsetse flies 

0.02 day⁻¹ Liana et al (2020) 
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Figure 2: Effect of varying T                  Figure 3: Effect of varying T  

on the susceptible humans   on the exposed humans 

  

Figure 4: Effect of varying T    Figure 5: Effect of varying T  

on the recovered humans   on the infected vectors 

 

Figure 1 displays the temporal evolution of susceptible humans over a 200-day period, 

showing curved trajectories that initially dip below zero before rising to different equilibrium 

levels based on varying transmission rates ( T ). The curves exhibit a characteristic dip-and-

recovery pattern, with higher T  values (shown in red and blue) reaching higher final 

equilibrium states around 61.8 2.0 10   individuals, while lower transmission rates result in 

lower equilibria. This pattern reveals that higher transmission rates paradoxically lead to 

larger susceptible populations at equilibrium because the disease burns through the 

population more quickly, creating immunity that eventually allows for population recovery. 

The initial negative dip suggests a mathematical artifact or represents a scenario where 

disease pressure temporarily overwhelms recruitment, but the system ultimately stabilizes 

with higher transmission rates supporting larger susceptible populations due to faster cycling 

through the disease states. Figure 2 illustrates the dynamics of exposed humans to 

trypanosomiasis, showing sharp peaks that occur early in the epidemic timeline before 

rapidly declining to near-zero levels. The cyan line ( 0.025T  ) exhibits the highest and 

earliest peak around day 20, reaching approximately 0.7 individuals per unit population, 
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while lower transmission rates show progressively smaller and later peaks. This 

epidemiological pattern demonstrates that higher transmission rates create more intense but 

shorter-lived exposure periods, as individuals rapidly progress through the exposed state into 

active infection. The quick decline to zero indicates that the exposed class is a transient state 

in the disease progression, with the timing and magnitude of peaks directly correlating with 

transmission intensity and determining the overall epidemic trajectory. 

Figure 3 presents the recovered human population dynamics, characterized by bell-shaped 

curves that peak around days 30-40 before gradually declining over time. All transmission 

rate scenarios show similar peak magnitudes (approximately 55-60 individuals), but the 

curves exhibit different slopes and timing, with higher T  values creating sharper, earlier 

peaks followed by steeper declines. This epidemiological significance reflects the temporary 

nature of immunity in trypanosomiasis, where recovered individuals eventually return to 

susceptible status through waning immunity ( T  parameter). The convergence of peak 

heights across different transmission rates suggests that the total number of individuals who 

recover is less dependent on transmission intensity than on the overall population dynamics 

and treatment efficacy, while the declining tails indicate continuous loss of immunity over 

time. Figure 4 depicts infected vector (tsetse fly) populations using a different parameter set (

TV ), showing rapid rise-and-fall dynamics with peaks occurring around days 20-25. The 

magenta line ( 0.016TV  ) demonstrates the highest peak at approximately 0.23 infected 

vectors per unit, while all curves rapidly approach zero by day 100. This pattern reflects the 

vector population's response to human infection levels, where infected vectors proliferate 

quickly when human cases are abundant but decline rapidly as human infections are 

controlled through treatment or natural recovery. The epidemiological implication is that 

vector control timing is critical during the early epidemic phase when vector infection rates 

peak, and that sustained vector populations require continuous human infection reservoirs to 

maintain transmission cycles.  

5.0 Conclusions 

In this research, we formulated a fractional-order mathematical framework to 

comprehensively examine the transmission dynamics of trypanosomiasis and assess the 

efficacy of treatment-centered intervention strategies. We employed the Caputo fractional 

derivative, which enables the model to capture memory effects—a crucial characteristic when 

investigating vector-borne diseases where the current epidemiological state frequently 

depends not only on immediate conditions but also on the historical patterns of infection, 

treatment, and vector-human interactions. Acknowledging the distinctive capacity of 

fractional models to represent real-world disease transmission patterns with greater fidelity 

than conventional integer-order systems, we performed a comprehensive theoretical 

examination of the proposed mathematical framework. Our analysis commenced by 

establishing the mathematical foundations for solution existence and uniqueness, ensuring the 

model demonstrates consistent behavior under epidemiologically realistic conditions. To 

numerically solve the system of fractional differential equations, we implemented the 

generalized Adams-Bashforth-Moulton predictor-corrector method, a robust computational 

scheme specifically designed to handle the non-local characteristics inherent in fractional 
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derivatives. Through extensive computational simulations, we investigated how different 

values of the fractional order parameter (as characterized by the Caputo operator) and critical 

epidemiological parameters, including vector biting rates, transmission coefficients, and 

treatment success rates across different disease stages, influence the temporal evolution of 

trypanosomiasis transmission within affected populations. The simulation outcomes reveal 

several epidemiologically significant findings. Notably, increases in vector-human contact 

rates and transmission probabilities correspond to substantial elevations in disease prevalence 

across all population compartments. Conversely, enhancing treatment rates and success 

probabilities for both hemolymphatic and meningo-encephalitic stages significantly reduces 

infection burdens throughout the community.  
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