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Abstract:

Trypanosomiasis remains a critical vector-borne disease burden, especially in sub-Saharan African communities
where tsetse fly populations thrive and healthcare infrastructure remains limited. Conventional integer-order
mathematical frameworks frequently inadequately represent the hereditary characteristics and intricate
transmission patterns inherent in vector-borne disease systems. This research presents a fractional-order
mathematical framework for examining the epidemiological characteristics of trypanosomiasis transmission,
with particular focus on how treatment interventions at different disease stages affect overall transmission
dynamics. The primary goal is to explore how variations in treatment efficacy rates and vector-human contact
patterns influence disease persistence and spread within affected populations. The framework employs fractional
derivatives to more accurately capture the non-Markovian properties of infection progression and immune
response mechanisms. The computational results further reveal that strategically implemented treatment
protocols can dramatically reduce infection prevalence, potentially driving the system toward disease
elimination scenarios. The innovation of this work centers on applying fractional calculus to trypanosomiasis
transmission modeling, an approach relatively unexplored in this epidemiological context, while simultaneously
incorporating multi-stage treatment interventions and natural immunity waning processes. The model
demonstrates superior precision in representing temporal disease progression compared to classical integer-order
approaches. This investigation underscores the utility of fractional-order modeling in vector-borne disease
research and emphasizes the critical importance of strengthening treatment capacity and vector control measures
to effectively manage and eliminate trypanosomiasis transmission in endemic regions.
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1.0 Introduction

Human African Trypanosomiasis (HAT), commonly known as sleeping sickness, is a vector-
borne parasitic disease transmitted by tsetse flies (Glossina species) that poses a significant
public health threat across sub-Saharan Africa Franco et al. (2018). The disease is caused by
two subspecies of Trypanosoma brucei: T. b. gambiense, which causes chronic infection
primarily in West and Central Africa, and T. b. rhodesiense, which causes acute infection in
East and Southern Africa Bischer et al. (2017), Kennedy et al. (2019). HAT affects
approximately 70 million people living in at-risk areas across 36 countries in sub-Saharan
Africa, with an estimated 300,000 to 500,000 people currently infected W.H.O (2023). The
disease progresses through two distinct stages: the hemolymphatic stage, where parasites
multiply in subcutaneous tissues, blood, and lymph, and the meningo-encephalitic stage,
where parasites cross the blood-brain barrier and invade the central nervous system
Steverding (2008). Without proper treatment, HAT is invariably fatal, making early diagnosis
and intervention critical for patient survival Malvy, and Chappuis, (2011). Despite significant
progress in reducing HAT incidence through enhanced surveillance, vector control, and
improved treatment protocols, the disease remains endemic in many rural communities with
limited access to healthcare infrastructure Simarro et al. (2012), Pandey et al. (2015). The
World Health Organization has set ambitious targets for HAT elimination as a public health
problem by 2030, necessitating innovative approaches to understand transmission dynamics
and optimize control strategies W.H.O (2020). Mathematical modeling serves as an essential
tool for analyzing disease transmission patterns, evaluating intervention effectiveness, and
guiding policy decisions in infectious disease control Heesterbeek et al. (2015), Rock et al.
(2015).

Traditional mathematical models using integer-order differential equations have provided
valuable insights into HAT transmission dynamics but often fail to capture the complex
biological processes inherent in host-vector-parasite interactions Anderson, and May (1991).
These conventional models inadequately represent the memory effects, hereditary properties,
and long-term dependencies that characterize real biological systems Diethelm (2010),.
Fractional-order mathematical modeling has emerged as a powerful alternative that addresses
these limitations by incorporating non-local characteristics and memory effects through
fractional derivatives Podlubny (1999), Kilbas (2006. Fractional differential equations
(FDEs) offer enhanced modeling capabilities that extend beyond classical integer-order
approaches by providing a more flexible framework for investigating complex dynamical
systems Baleanu et al. (2012). These models utilize fractional derivatives, such as Caputo and
Riemann-Liouville operators, which possess singular kernels and excel at capturing memory
effects in biological processes Caputo and Fabrizio (2015). Additionally, non-singular kernel
derivatives, including Mittag-Leffler and Atangana-Baleanu operators, have gained
prominence due to their superior applicability in modeling real-world phenomena Atangana,
and Baleanu (2016). Recent advances in fractional calculus applications to epidemiological
modeling have demonstrated significant improvements in describing disease transmission
dynamics across various infectious diseases Sun et al. (2018). For instance, Atangana and
Araz (2020) developed a fractional-order model for COVID-19 transmission using Atangana-
Baleanu derivatives, showing enhanced prediction accuracy compared to classical models.
Similarly, Baleanu et al. (2020) applied fractional calculus to analyze HIV/AIDS dynamics,
demonstrating superior model flexibility and realistic behavior representation. Khan et al.
(2020), investigated malaria transmission using Caputo fractional derivatives, revealing that
fractional-order models better captured the complexity of host-vector interactions and long-
term epidemic trends.
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The Adams-Bashforth method has proven particularly effective for solving fractional
differential equations in epidemiological applications, providing stable and accurate
numerical solutions Diethelm et al. (2002) Diethelm and Ford (2004), pioneered the
application of fractional Adams-Bashforth-Moulton methods for solving nonlinear fractional
differential equations, establishing theoretical foundations for their implementation. Pinto and
Machado (2013) utilized the Adams-Bashforth method to model fractional-order dynamics in
tuberculosis  transmission, demonstrating improved convergence properties and
computational efficiency. More recently, Ahmed and EI-Sayed (2007) applied the Adams-
Bashforth method to analyze hepatitis B virus dynamics using fractional calculus, showing
enhanced model performance in capturing disease progression patterns. Several studies have
successfully employed the Adams-Bashforth method in fractional-order disease modeling
applications. Arafa et al. (2012) used this approach to investigate fractional-order HIV
infection models, demonstrating superior numerical stability compared to other methods.
Sweilam et al. (2007) applied the Adams-Bashforth method to solve fractional epidemic
models for influenza transmission, revealing enhanced accuracy in long-term predictions.
Additionally, EI-Sayed et al. (2007) utilized this method to analyze fractional SIR models for
measles dynamics, showing improved computational performance and solution convergence.
Further research by Odibat and Shawagfeh (2007) employed the Adams-Bashforth method
for solving fractional-order systems in epidemiology, emphasizing its effectiveness in
handling complex nonlinear dynamics. Momani and Odibat (2007), demonstrated the
method's applicability to fractional predator-prey models with epidemiological implications,
while Hashim et al. (2009) applied it to fractional-order models of infectious disease
outbreaks with vaccination strategies. These studies collectively highlight the Adams-
Bashforth method's versatility and reliability in fractional-order epidemiological modeling.
The integration of fractional calculus with the Adams-Bashforth method offers significant
advantages for modeling complex biological systems like HAT transmission (2010). This
approach provides enhanced computational stability, improved solution accuracy, and better
representation of memory effects inherent in disease transmission processes Daftardar-Gejji,
and Jafari, (2006). Furthermore, fractional-order models solved using Adams-Bashforth
methods demonstrate superior performance in capturing long-term dependencies and non-
local interactions that characterize vector-borne disease dynamics Garrappa, (2018). Recent
applications of fractional-order modeling to vector-borne diseases have shown promising
results. Mandal et al. (2021) developed a fractional model for dengue fever transmission
using Caputo derivatives and Adams-Bashforth numerical methods, revealing enhanced
prediction capabilities for epidemic patterns. Similarly, Kumar et al. (2017) applied fractional
calculus to chikungunya virus dynamics, employing Adams-Bashforth-Moulton methods to
demonstrate improved model stability and biological realism. These studies underscore the
potential of fractional-order approaches in understanding and controlling vector-borne
disease transmission.

The primary objectives of this study are to: (1) develop a comprehensive fractional-order
mathematical model for HAT transmission incorporating both human and tsetse fly
population dynamics; (2) analyze the model's mathematical properties, including existence,
uniqueness, and stability of solutions; (3) implement the Adams-Bashforth method for
numerical solution of the fractional differential equation system; and (4) conduct sensitivity
analysis and numerical simulations to evaluate the effectiveness of various control strategies.

This research addresses a significant gap in the literature by combining fractional calculus
with the Adams-Bashforth method to model HAT transmission dynamics comprehensively.
The study contributes to the growing body of knowledge on fractional-order epidemiological
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modeling while providing practical insights for HAT control and elimination strategies. The
manuscript is organized as follows: Section 2 presents the fractional-order model
formulation, Section 3 analyzes mathematical properties and stability, Section 4 discusses
numerical methods and simulation results, and Section 5 provides conclusions and
recommendations for future research.

Definition 1:

Let f € A”(R), then the left and right Caputo fractional derivative of the function f is given

by
°D/ f(t) = [tD 7(%} f(t)]

“Dy f (t) :ml((t Ay (,1))(” (1)

The same way

¢y _ —(m-7) ﬂ "
Tth(o—[tDT {dtj f(t)}

° D7 f (1) =%]((g_t)m-y_l £"(2))dA

Definition 2: The generalized Mittag-Leffler function E,_ (x) for xeR is given by

0

,B>0 2
0= S o 7% @
which can also be represented as
1
Eaﬁ(x)_XEaa+ﬂ( )+F(ﬂ) (3)
E,,(x)=L|t"E _ S 4
a,ﬁ( )_ a,ﬁ(iy/ta) _Sa iw ( )

Proposition 1.1.

Let f e A"(R)NC(R) and a eR,m-1<a<m,

Therefore, the conditions given below holds:

LD/ f(t)="f(t)
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21D f ()= F ()= 25 5 (t):

2.0 Model Formulation
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Figure 2: Schematic Diagram of the trypanosomiasis model
2.1 Model Description

The rate at which individuals enter the susceptible human population is represented as A, so
that g, represents the effective contact rate between susceptible individuals and infected
tsetse flies. We denote @, represents the rate of re-susceptibility of recovered humans from
trypanosomiasis, &, is the progression rate from E, compartment to I,,, compartment. «,,;
is the progression rate from 1, compartment to I, compartment. g, transmission

probability of trypanosomiasis from infected humans to susceptible tsetse flies. The natural
death rate of humans is denoted as g, . Humans die due to the infectiousness of

hemolymphatic trypanosomiasis at the rate 5, . The parameter y,,, represents the treatment
rate for humans infected with hemolymphatic trypanosomiasis, while y,,, denotes the

treatment rate for humans infected with meningo-encephalitic trypanosomiasis. The recovery
rate from trypanosomiasis treatment is represented by 4, , which transitions individuals from

the treatment compartment T, to the recovered compartment R, . Disease-induced mortality
occurs at different stages, with &,,, representing the death rate for meningo-encephalitic
trypanosomiasis and &; representing the death rate for individuals in the treatment class. For
the tsetse fly population dynamics, A, represents the recruitment rate of susceptible tsetse
flies into the vector population. The natural mortality rate of tsetse flies is denoted as y, ,
while &, represents the disease-induced death rate for infected tsetse flies. The parameter
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6., describes the progression rate from exposed tsetse flies ( E,, ) to infected tsetse flies (1,

). The biting rate of tsetse flies, which determines the frequency of contact between vectors
and humans, is represented by m, .

The force of infection parameters play crucial roles in disease transmission dynamics. For

. . | . . .
human infection, A, =% represents the per capita rate at which susceptible humans
H

acquire trypanosomiasis infection from infected tsetse flies. Conversely, for vector infection,
— mTﬂFV(IHT + IMT +TT)
Ay = .
H
become infected through contact with infected humans in various disease stages. The total
human population N, serves as the normalization factor, ensuring that the force of infection
appropriately scales with population density.

represents the per capita rate at which susceptible tsetse flies

2.2 Model Equations

The differential equations for the trypanosomiasis transmission dynamics in the human and
vector population are:

dth =A, =S, — 1, Sy + o R,
ddEtT =4S, — (6 +u,)E,
d(IjTT =0, E; — (@ur + iy + S + 1) i
d:j“{” = aur by — (e + O + 40 e
%WHTIHTWW'MT‘(‘9T+5T+”H)TT ©
d:T = 9T, — (o +1)R;

t
d%:Aw—(ﬂw + iy )Sry
%L;v:&sz—(eTva)Ew
chjTtV =0, Ery, — (S + iy ) 1y
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The force of infection for trypanosomiasis in the human population:

_ rnTﬁTITV
Ar TN,

The force of infection for trypanosomiasis in the tsetse fly population:

— mTﬂI'V(IHT + IMT +TT)
iy = "

where N, =S, +E; + 1, +1,,; +T; + R, is the total human population.

3.0 Fractional Trypanosomiasis mathematical model

In this section, we extend the integer-order trypanosomiasis model from the differential
equations by incorporating the Caputo fractional derivative operator. This modified model
offers greater flexibility compared to the classical model, as the fractional-order formulation
allows for varying outputs and diverse response behaviors. The fractional trypanosomiasis
model is thus presented as follows:

°D7S, = Ay~ Sy — S + O R,

°DE, = A4Sy — (6 + 1)E;

“D/ Ny =60 E; —(Qr +Vur + 0 + )

©D Ly = Gy Ly = (s + Gy + )

“D/Tr =i bur +Zur ur = (& +6 + )T, (6)
°D/R = 4Ty — (@, + )R,

°D/Spy = An, ~ Uy + 1Sy

°D/Ery = Ay Sy ~ By + i )Eny

“D/ly =6y Ery —(Gry + iy ) Iy

Subject to positive initial conditions

Sy (0) =Swo: Er (O): Eror lur (0): liror Tur (O) =lyro: Tt (O)ZTTO,
Ry (O) = Ry, STv (O) = STVO’ En (0) =Enoi by (O) = lqyo-
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3.1 Positivity of model solution

We considered the non-negativity of the initial values N (t) < Au as t—oow
Hy

Secondly, if, limsup N, (t) < z
U

then our model feasible domain is given by:

(SH’ET7IHT’IMT'TT7RT’STV’ETV’ITV)CR+9:

= A
H

Sy+E +1 s+l +T: +R +S, +E, + 14y S,u—
H

sothat Q=Q,, c R+,
hence, Q is positively invariant.

If Stio Eror liror Turor Tros Rros Stvor Envos Irve @re non-negative, then the solution of model (6)
will be non-negative for t > 0. From Eq. (6), picking the first equation, we have that

“D/'Sy =Ay —AS, — 1Sy + O Ry
“D/S, =Ay — (A +14,)S, + R,
“D/Sy + (A +4)Sy — @y Ry = A,
But A, >0 then °D/S, + (4, +,)S,, —@R; >0
Applying the Laplace transform we obtained: L| °D/'S,, |+ L[(4 +,)S,]>0
s"SH (s)—s"'SH (0)+ (A + 44 ) Sy () =0

g7

SH (s)>
(5) "+ (AT +

By taking the inverse Laplace transform, we obtained:

S ()2 E, 1 (= (A + 14 )t ) Suio (7)

Now since the term on the right hand side of Eq. (7) is positive, we conclude that S,, >0 for
t>0. In the same way, we also have that
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E >0, >0, >0T, >0,R >0,S,, >0,E, 0,1

iyt =Yl = v = vV =

>0

TV =

that is are positives, therefore, the solution will remain in R+° for all t>0 with positive
initial conditions.

3.2 Existence and uniqueness of our model solution

Let the real non-negative be J, we consider L =[0,K].

The set of all continuous functions that is defined on M is represented by N; (L) with norm
as;

|X| =sup{‘K(t)‘,t € L}.Considering model (6) with initial conditions presented in (8) which
can be denoted as an initial value problem (IVP) in (13).

"D/ (t)=Z(t,X(t)), 0<t<J <o, X(0)=X,.
Where

Y (t)=(Su (t), Er (t), L (1) e (1) T3 (1), Ry (£),Spy (8),Eqy (1), 15y () represents  the
classes and Z is a continuous function defined as follows;

Ay =4Sy — 1y Sy + or Ry
22 Sy — (O + ) E;
O Er — (@ + 7ur + O + ) i
Ar Ve = (P +Our + 144 ) Ve
Y b + Ve bur = (3 + 67 +44)T;

N

N
N
—

~+

w
T
—~

~+

~—+
m
—~~
~—+
~ —

N N
IN w
—_~~~
~+ ~—+
T
—
~+
N S
—

<

=
T~ A~

~—+

Z(t,X(t)=] Z5(tT, (1) |= T —(@r + )Ry , ®)
ZG('[,RT (t)) ATV_(mTIBTv(IHT"‘IMT +TT)+IUTVJSTV
Z,(t,5n (1)) N,
Zg (t,ETv (t)) mTIBTV(IHTN_'-Iw +TT)_(‘9TV +1uTV)ETV
Zy(t, 14 (1)) i

& Ery _(6TV + thy ) 7y

Using proposition (2.1), we have that,
Sy (t):SHO+ I/ [AH — A4Sy — 1y Sy +a‘rRT]1

E (t)=Ero+ 17 [AS, — (6 +14,)E; ], 9)
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/4
wro It [‘9 Er — (@ + 7 + 6 +/uH)IHT]’

=
IMT(t):I wro 1Y [aHT HT (yMT+5MT+IuH)IMT]
TT(t):TTO+I [7HT|HT+7MT MT ('9r+5 +IUH)T]

R, (t) =Ry +1{ I:‘gTTT _(a)r +;U) RT]

Lol + 1y +T5)
Sty (t)ZSTVO—'_Ity[ATv_mT = HTN M — 1 S,y

Iy +1yr +T
Erv (t) =En o+ 1{ {mTﬂTV( ar * lyr +Tr) +:U} S = (@ + 1)Ery

N

Iy (t) =l o+ 1 [arv En — thy ITV]
We obtain the Picard iteration of (9) as follows;

Stin (t): Sho +ﬁj}:(t_ﬂ'r)y_l Zl(ﬂT'SHn—l(;{T ))dﬂ'r’

5AU=5NW%Eﬁ“—4Y4Q0%EmDMJW%’

L (£) = lﬁ [t =20 232 Vo () d 2,

+;63ﬁ0—4Y“zxawmme4»dA,

Ton(0)=Teo s (02 20 (2 T (),

o (1) = R% [L(t=2 ) 2o (30 Reoy () d s,

-1

Z, (2 Srvoy (4))dA4r, (20)

1

Ervn (t) =Eno +mj: (t — A )yil Zg (/‘Lr By (Z'T ))d/lr’

()= vt 5 =20 2o (b () 2.

Lemma 1. The Lipschitz condition described from Eq. (10) is satisfied by vector Z (t, X (t))

onaset [0,L]x R} with the Lipschitz constant given as;
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w—max[(ﬂT +:”)1(9T + ), (e + Vi +6ur + 1) (Ve +Our + 144), (& +6; +,UH),]
(a)r + Uy )1(ﬂ'rv +IUTV)’(9TV + by ), by
Proof.

‘Zl(t’SH)_Zl(t’SHl)‘:P\H — A Sy — 1y Sy +a)FRT|
‘_ﬂ’TSH — Hy Sy (SH _SH1)+/UH (SH _SHl)‘Sﬂ;

Sy _SH1|+IUH |SH _SH1|

2|2y (680 ) = Zy (t Spr )| < (7 + 1) (S — S
Similarly, we obtained the following;

‘Zz (t' E, )_Zz (t' ETl)‘ < (& +/uH)|ET - ET1|’
‘Zs(t' IHT)_Z3(t’ IHTl)‘ S(aHT + Vur + 0 + 44y )|IHT - IHT1|'

‘24 (t’ IMT)_ZA (t1 IMTl)‘ < (ur +Our +1uH)|IMT - IMT1|
125 (6T )= Zg (8T )| < (S + 65 + 1) [Tr =Ty
‘Za (t’ R, )_Ze (t1 RTl)‘ < (a)r + Uy )|RT - RT1|

I+ 1, +T
\27 (t,Sv)-Z, (t,sTVl)\s[mTﬂW( “LI MT T)+MVJISTV ~Shs @D
H

‘Zs (t’ ETV )_Zs (t’ ETVl)‘ < (eTV +IuTV)|ETV - ETV1|'
‘Zg (t’ Iy )_Zg (t, ITVl)‘ < by |ITV - ITV1|'

Where we obtained
Z(t%, (1) -Z (6. X, (1) <y X=X,
v = max[(ﬂT +/u)1(9T + ), (e + Vi +6ur + 1) (Ve +Our + 144), (& +6; +,UH),J

((0r +,uH),(ﬂ¢V +ﬂ‘|’v)!(eTV + Ly )s by

3.3 The basic reproduction number (R;] ) and model equilibrium points:

The disease-free equilibrium points of the trypanosomiasis model is expressed as:

(HDFEP) = [(s; Er i b TR Sy By by ) = [2—*',0,0,0,0,0,%,0,0]] (12)
H Vv
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Letn:(ET’IHT’IMT7TT7ETV7ITV)

So that % =F-V.
dt

0 0 0 0 0 4
0 0 0 0 0 0
0 0 0 0 0 O
For =| 0 0 0 0 0 O
0 MBry Aty MPryAry iy MPry Ay by 0 0
Ay by Ay by Ay by
10 0 0 0 0 0|
K, 0 0 0 0 0 |
-0 K, 0 0 0 0
0 —-o, K 0 0 0
Vor = 0 -y % K 0 0
HT MT a7
0 0 0 0 K 0
0

Where Ky =(6; +44y) Kor =(aiy + 71 + 6 + 1) Ko =(2ur +Our + 44y
Kir =(% +6; +14y) Kop =(Oy + iy ) Ko =(Sy + 141y )

Mathematically, the basic reproduction number is computed as R, :p(FV’l) where p is the

dominant Eigen value of the system(FV_l). Where Rg is the basic reproduction number

associated with the individuals in the population.

R :\/ﬁT ‘M- B, - Ay - iy
0
Ay -ty Kyr - Kgr

4.0 Fractional order model numerical results

The fractional-order trypanosomiasis model was numerically solved using the generalized
fractional Adams—Bashforth—-Moulton method as described in Diethelm and Ford, (2004),
Pinto,and Machado, J.A.T. (2013), The parameter values utilized in the model are provided
in Table 1, with varying fractional-order values. (y) are considered and simulated.

4.1. Implementation of fractional Adams—Bashforth—Moulton method

The approach outlined in Ahmed, and El-Sayed (2007), Arafa et al. (2012) is applied in this
study. An approximate solution for the fractional trypanosomiasis model is obtained using the
fractional Adams—Bashforth—Moulton method. The fractional trypanosomiasis model is now
expressed as follows:
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"D/P(t)=Q(t,q(t)).0<t<p, (13)
P (0)=P",,,,n=10,,..0,q9=[r]

Where P =(S},Ef, 1ip i, T7, Ry, Sy By, Iy )€ RY and Q(t,q(t)) is a real valued
function that is continuous.

Eq. (13) can be therefore be represented using the concept of fractional integral as follows:
t)= Ep(n) v, 1 [{t=y)yQ(v.a(y))dy, (14)
% n! F(7) 0

Using the method described in [24], we let the step size g =§ N e[] with a grid that is

uniform on [O,,B]. Therefore, the fractional order trypanosomiasis model can be
approximated as:
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From (15) and (16) obtained:
dy,K+1=Ky+1—(k—7)(k+7)7,,,y=0
k—y+2Y "+ (k—p) "t —2(k—y+1)"" 1<y <k
(k—y+2) y y y
Ly=k+1

and

fype =g—y[(k—y+1)y—(k—y)y],,0s y<k.
y

Table 1: Parameter VValues and Sources

Parameter Description Value Units Source

Ay Recruitment rate of humans 0.02 day™ Gervas et al. (2018)

Ay Recruitment rate of tsetse flies 0.05 day™ Rock et al. (2019)

m, Biting rate of tsetse flies 0.33 day™ Lord et al. (2018)

B Contact rate between susceptible 0.2 dimensionless | Funk et al. (2013)
humans and infected tsetse flies

By Contact rate between susceptible 0.15 dimensionless | Hargrove et al.
tsetse flies and infected humans (2012)

w; Rate of re-susceptibility of recovered | 0.005 day™ Checchi et al.
humans from trypanosomiasis (2018)

m Natural death rate of humans 0.000045 | day™ World Bank (2023),

Ly Natural death rate of tsetse flies 0.03 day™ Hargrove (2004),

o, Progression rate from exposed to 0.143 day™ Jamonneau et al.
hemolymphatic trypanosomiasis (2012)

Ay Progression rate from hemolymphatic | 0.033 day™ Kennedy (2013)
to meningo-encephalitic stage

Yir Treatment rate for hemolymphatic 0.1 day™ Franco et al. (2014)
trypanosomiasis

Yur Treatment rate for meningo- 0.067 day™ Bischer et al.
encephalitic trypanosomiasis (2017)

* Recovery rate from trypanosomiasis 0.2 day™ Priotto et al. (2009)
treatment

0., Progression rate from exposed to 0.125 day™ Aksoy et al. (2003)
infected tsetse flies

Sur Disease-induced death rate for 0.01 day™ Odiit, et al. (2004)
hemolymphatic trypanosomiasis

Oyr Disease-induced death rate for 0.05 day™ Blum et al. (2006)
meningo-encephalitic trypanosomiasis

S Disease-induced death rate for 0.001 day™ Simarro et al. (2012)
trypanosomiasis treatment class

Sy Disease-induced death rate for 0.02 day™ Liana et al (2020)
infected tsetse flies
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Figure 1 displays the temporal evolution of susceptible humans over a 200-day period,
showing curved trajectories that initially dip below zero before rising to different equilibrium

levels based on varying transmission rates ( 3; ). The curves exhibit a characteristic dip-and-
recovery pattern, with higher B. values (shown in red and blue) reaching higher final

equilibrium states around 1.8—2.0x10° individuals, while lower transmission rates result in
lower equilibria. This pattern reveals that higher transmission rates paradoxically lead to
larger susceptible populations at equilibrium because the disease burns through the
population more quickly, creating immunity that eventually allows for population recovery.
The initial negative dip suggests a mathematical artifact or represents a scenario where
disease pressure temporarily overwhelms recruitment, but the system ultimately stabilizes
with higher transmission rates supporting larger susceptible populations due to faster cycling
through the disease states. Figure 2 illustrates the dynamics of exposed humans to
trypanosomiasis, showing sharp peaks that occur early in the epidemic timeline before

rapidly declining to near-zero levels. The cyan line (3; =0.025) exhibits the highest and
earliest peak around day 20, reaching approximately 0.7 individuals per unit population,
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while lower transmission rates show progressively smaller and later peaks. This
epidemiological pattern demonstrates that higher transmission rates create more intense but
shorter-lived exposure periods, as individuals rapidly progress through the exposed state into
active infection. The quick decline to zero indicates that the exposed class is a transient state
in the disease progression, with the timing and magnitude of peaks directly correlating with
transmission intensity and determining the overall epidemic trajectory.

Figure 3 presents the recovered human population dynamics, characterized by bell-shaped
curves that peak around days 30-40 before gradually declining over time. All transmission
rate scenarios show similar peak magnitudes (approximately 55-60 individuals), but the

curves exhibit different slopes and timing, with higher S, values creating sharper, earlier

peaks followed by steeper declines. This epidemiological significance reflects the temporary
nature of immunity in trypanosomiasis, where recovered individuals eventually return to

susceptible status through waning immunity ( @, parameter). The convergence of peak

heights across different transmission rates suggests that the total number of individuals who
recover is less dependent on transmission intensity than on the overall population dynamics
and treatment efficacy, while the declining tails indicate continuous loss of immunity over
time. Figure 4 depicts infected vector (tsetse fly) populations using a different parameter set (

B+ ), showing rapid rise-and-fall dynamics with peaks occurring around days 20-25. The

magenta line (4, =0.016) demonstrates the highest peak at approximately 0.23 infected

vectors per unit, while all curves rapidly approach zero by day 100. This pattern reflects the
vector population's response to human infection levels, where infected vectors proliferate
quickly when human cases are abundant but decline rapidly as human infections are
controlled through treatment or natural recovery. The epidemiological implication is that
vector control timing is critical during the early epidemic phase when vector infection rates
peak, and that sustained vector populations require continuous human infection reservoirs to
maintain transmission cycles.

5.0 Conclusions

In this research, we formulated a fractional-order mathematical framework to
comprehensively examine the transmission dynamics of trypanosomiasis and assess the
efficacy of treatment-centered intervention strategies. We employed the Caputo fractional
derivative, which enables the model to capture memory effects—a crucial characteristic when
investigating vector-borne diseases where the current epidemiological state frequently
depends not only on immediate conditions but also on the historical patterns of infection,
treatment, and vector-human interactions. Acknowledging the distinctive capacity of
fractional models to represent real-world disease transmission patterns with greater fidelity
than conventional integer-order systems, we performed a comprehensive theoretical
examination of the proposed mathematical framework. Our analysis commenced by
establishing the mathematical foundations for solution existence and uniqueness, ensuring the
model demonstrates consistent behavior under epidemiologically realistic conditions. To
numerically solve the system of fractional differential equations, we implemented the
generalized Adams-Bashforth-Moulton predictor-corrector method, a robust computational
scheme specifically designed to handle the non-local characteristics inherent in fractional
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derivatives. Through extensive computational simulations, we investigated how different
values of the fractional order parameter (as characterized by the Caputo operator) and critical
epidemiological parameters, including vector biting rates, transmission coefficients, and
treatment success rates across different disease stages, influence the temporal evolution of
trypanosomiasis transmission within affected populations. The simulation outcomes reveal
several epidemiologically significant findings. Notably, increases in vector-human contact
rates and transmission probabilities correspond to substantial elevations in disease prevalence
across all population compartments. Conversely, enhancing treatment rates and success
probabilities for both hemolymphatic and meningo-encephalitic stages significantly reduces
infection burdens throughout the community.
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