GPH-International Journal of Applied Science (e-ISSN: 3050-9653| www.gphjournal.org)
Peer-Reviewed | Open Access | Indexed Internationally Vol. 08, Issue 10, October 2025 |

Pages: 01--118 $\ \odot$ Global Publication House – All rights reserved

DOI: https://doi.org/10.5281/zenodo.17607512

A WAY FOR - DECEPTIONING THE NORMAL-or the-DANGEROUS CELLS

USING VIBRATIONS

BY

Markos Georgallides

¹Larnaca-Cyprus (Expelled from **Varosha** - Famagusta town occupied by the Barbaric Turks, in Aug - 1974) Cyprus, Civil & Structural Engineer (NATUA), Athens. Email address: georgallides.marcos@cytanet.com.cy

Abstract:

The Electron's Nutation in Hydrogen cave Produces Energy due to g effect , as minimum frequency $f_n \equiv 2,8398447.\ 10^{10}\ H$ and thus exists in all Atoms . This Energy of Hydrogen-Cave becomes an Electrical - Magnetic Conductor which is the Pin and Plug of atoms . Pins entering Into the other Atom-Sockets consist the Orbit-Bracket–Hooks i.e. are the Hands of Atoms . Hooks Placing their Pins into the other Atoms Drains = Holes = Plugs , is done that what we say Bonding .

Hydrogen-Cave In –Out Universe occupies mass m_H velocity c and Power P_H.

Preliminaries:

Atoms are consisted of a Hydrogens - Heap , which vibrates and Equilibrium at the Dynamic Mode-Shapes following The Stationary – In Sphere , Tetrahedron , Cube , Ex-Sphere - Geometrical construction . Since vibration means the frequencies in each Atom or and its Compound , so thus they consist the *Electromagnetic Waves* . The Interactions of any two or more Energy Systems with known Status use the Markos Program which is \Rightarrow { *The Carrier Modulating–Modulated–Demodulation Waves Process*} for their Energy-Spectrum Waveform . Electromagnetic Signals may be used to Transmit Information very quickly and over great distances . Informations are encoded on Atoms - Signals using , Amplitude and Frequency modulation , and reviewed in the Program . The Process of retrieving the information from encoded Signals is detected by the Antidotes .

This simple Program- Process allows the User to detect any action of the , *Initial – Signal* , through the Modulating–Modulated–Demotulated Process , to the *Final and wish Repaired Signal* . The Spectrum Analyzer is detected in all Steps.

An Application of the method is used on CELLS which consist themselves a close System or , a Complete-Energy-Monad .

Keywords: Deceptioning the Cells using Vibrations,

CONTENT

CONTENT ABSTRACT	Done I
A: GENERAL :	Page1 ,
1a: The Energy Results of Gravity in Hydrogen-cave B: AN TESTING METHOD	Page3.Fig-1-
1b : The Needed Materials and the Steps	Page 5 ,
2b: The Results from Article [111]	Page 5 ,
C : APLICATION OF THE METHOD TO A HEALTHY-	CELL
1c : The Flow Charge in Local Nervous System	Page 6,
2c : The Results of Actions in LNS	Page 6,
D : APLICATION OF THE METHOD TO A SEMI-HEA	LTHY- CELL
1d: The Flow Charge in Local Nervous System	Page 8,
2d: The Results of Actions in LNS	Page 8 ,
E : APLICATION OF THE METHOD TO A SEMI-HEA	LTHY- CELL
1e: The Flow Charge in Local Nervous System	Page 8,
2e: The Results of Actions in LNS	Page 8 ,
F : APLICATION OF THE METHOD TO A BREAST - C	CANCER
FROM THE SPREAD - CANCEROUS - CELLS.	
1f: The Flow Charge in Local Nervous System	Page 9,
2f: The Results of Actions in LNS	Page 9,
G : APLICATION OF THE METHOD TO THE \rightarrow ONE	-ARRANGMENT ←
1g: The Flow Charge in Local Nervous System	Page 10,
2g: The Results of Actions in LNS	Page 10,
$H: APLICATION OF THE METHOD TO THE \rightarrow ONE-$	$ARRANGMENT \leftarrow$
1h: The Flow Charge in Local Nervous System	Page 10 ,
2h: The Results of Actions in LNS	Page 10,
I : APLICATION OF THE METHOD TO THE \rightarrow BRAI	N - RECEPTORS ←
1i : The Flow Charge in Local Nervous System	Page 11 ,
2i : The Results of Actions in LNS	Page 11 ,
E : REFERENCES	Page13.Fig-2,

A...GENERAL:

1a..The Results in Hydrogen - cave :

- 1...Hydrogen-Cave , IN OUT Universe occupies $mass\ m_{\ H}$, velocity $\overleftrightarrow{c}\,$, and Power P $_{H}$
- 2...Electron in Hydrogen-cave Precesses and Nutates due to the Gravitational constant G, g. The produced Work is stored in form of \rightarrow Stress Energy as Hydrogen Bracket Hook The Electron Precesses from the continuous and immense-communication to gravity, g. Electron-Spin is the Angular-momentum-vector \overline{B} and rotates according to equation $\frac{dB}{dt}$
- 3...The Stationary → Tetrahedron, In-Sphere, Cube, Ex-Sphere ← construction of Atoms Permits the Space coordinate Structure of Atoms, The Wave-eigenfunctions of many non-commuting Physical operators as Momentum. Power, from the Quantum-Mechanical description of the Physical-Reality is Complete
- i.e. IF-known the Physical Operators, their coordinates are simultaneous Physical reality.
- 4...The Interactions of Two or more Systems with known Status can be calculated any time by the Bioelectronic-Spectrum of the →{ Carrier-Modulating-Modulated, Demodulation Process Mechanism } ← using Markos Program < Programming Atoms-Bonding and Their Compounds > SO, Energy ≡ motion is of Wave nature which enters the Energy caves and becomes a Particle or Wave or Both. In case of Photons exists this DUAL-Property, Wave Particle. Thus The Historical Doubt of Einstein Podolsky Rosen for the Q-Mechanics Completion VANISHES. [100,104].
- 5... The Programming of Atoms Bonding is the Quantization of Atoms-Wave-Energy to all Possible Equilibrium Positions of the [⊕↔⊖] constitutes Reactions. The Wave-Energy as Vibration travels at 75-90 % of the light speed c, while the Wave-Energy in Black Holes is nπc times of the light speed. [100-101]
- 6... From all the Possible Reactions in Compounds, the Bonding or the Releasing of Energy is the Vital rule of the Theory of Vibrations. The Program Programming the Atoms and their Compounds, analyses all the Interactions of two or more Energy Systems with known Status using the,
- → Carrier Modulating Modulated Demodulation Waves Process ← Some following Wave's Properties that are Defined:

```
6a... The Equilibrium Mode – Shapes , Φ , Diagrams .
```

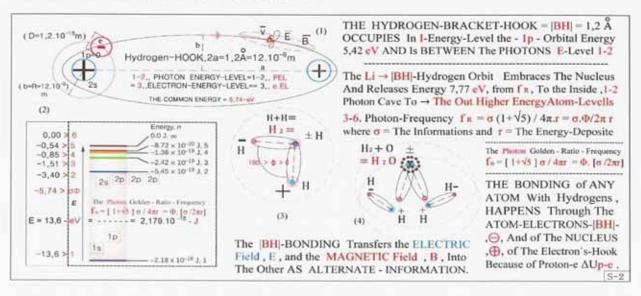
6e.. The Intensity of the
$$\lambda$$
-Electric-Field , I_{λ} , in 10^{-12} Ampere ,

6g.. The Wavelength ,
$$\lambda$$
 , in .10⁻¹⁰ meters ,

6h.. The Wave Velocity,
$$\bar{\mathbf{v}}$$
, in 10^5 meters / s,

6j.. The Radius of the Helical motion,
$$r = A_R$$
 in $.10^{-10}$ meter,

6k.. The Total Carrier Power,
$$P_{CT}$$
, in 10^{-20} Watt,


61.. The Total Side-Bands Power,
$$P_T$$
, in 10^{-20} Watt,

6m..The Temperature from Voltage or K-Energy become as , T_{VB} , in Kelvin ,

6n.. The Side-Bands Amplitude,
$$A_B$$
, in 10^{-10} meter,

6p.. The Modulating Phase Shift ,
$$\phi$$
 , in Rad /2 π ,

6q.. The Modulating Factor,
$$m$$
, in n-n,

Figure-1.. The \pm Energy in Hydrogen and Atoms exists from Hydrogen Common-Atom . The two Hydrogen Bonding → H + H = H₁¹ + H₁¹ = H₁¹⁻¹ H₁₋₁¹ = H₁⁰ + H₀¹ = H₂ Water H₂O = O₁ H₂= O₂² H₂² = T₄⁴ = O₂²⁻²H₂₋₂² = O₂⁰ H₀² = ES $_{2=T/2}^{2=T/2}$, Still. [102]

An Way for Deceptioning the Normal -- Or the - Dangerous Cells . .

B... AN TESTING - METHOD:

1b., The Needed - Steps:

- 1)...We choose TATP Explosive, of chemical formula 3.[C3 H6 O2] = [C9H18O6] which belongs to a class of Organic Peroxide explosives, and exploding violently upon Heating. We will detect its entire JOURNEY towards the center of the Cell with its Initial or Final and its Repaired Signal.
- The Membrane *Mediator* (coactivator) is Thermochemical of pre-viotic as is The carbon dioxide and water of chemical formula [C O2 H] n = 6
- The Membrane Pathway Sensor is Electrochemical as is the Nitrogen Dioxide of chemical formula [N O2]
- 4)...The Membrane *Signaling* is the Snare Protein as is the Nucleic acid Hormone of chemical formula [N H3 C O O]
- The Plasma Intracting *Ligand Signal* is the endocrine Signaling as are the two Isomeric Hydrogen of chemical formula 2.[N H4] O1
- 6)...The Self Assemble Signal Membrane Head Tail Bilayer as is the Phospholid of chemical formula [N P O4 H O2 O2]
- The Building Block of the Membrane as this is the Lipid Protein of the chemical formula OC [CH2]17 + OC [CH2]17
- 8)...The Polar and Flavoring Glues Agent, the Receptors Controller as it is the Electronic Pathway of chemical formula C O H [COH]4 + [CH2OH].
- 9)...The Membrane Lipid Protein Plasma as is the Glycerophospholipid of chemical formula [PO4]+[CH2]2+CHO2C2 +HO +H4 +CH3[CH2]17 + COOH + CH3 [CH2]17 + COOH
- 10)..The NORMAL or DANGEROUS Initial or Repaired Signal In-balancing the DNA as is the Dioxin d.ATP of the chemical formula 4.[C10 H12 N5 O12 P4]
- The CANCEROUS Repaired Signal In-balancing the DNA as is the Dioxin d.ATP of the chemical formula 15.[C10 H12 N5 O12 P4]

2b, From Article [111]

- The Resonance of 2 frequencies A, B occurs, when their Natural-frequencies coincide, i.e. it is valid A = B.
- 2... The two frequencies A, B, are coupled, when a Third frequency C is added so that A, B, are in Resonance, i.e. it is valid A+C=B+C.
- 3... When [A] is an carrier wave, [B] is the modulating wave, [M] = [A] + [B], is the modulated wave, [DM] is the demodulated wave, [AN] is the Antidote, [LNS] is the Local Nervous System, [CNS] is the Central Nervous System, then

for the coupled frequencies it is valid \rightarrow [M] + [AN] = [LNS] & also [M] + [AN] = [CNS] ← That is, the Antidotes, [AN] are those frequencies as the above [C] that are added so that [A], [B] are in Resonance with them.

- 4...The Uncoupled values are inside of the Coupled Natural frequencies by small Amounts . The multitude of numbers of the uncoupled signaling Systems are placed to the Sidebands as this is the Athwart Energy Vibration Spectrum .
- 5... Placing \Rightarrow [M] = [A] + [B] \rightarrow The Modulated Wave.

[AN] = [C]

→ The Antidote ,

 $[M] + [AN] = [LNS] \rightarrow IS$ in Resonance to Local Nervous System,

 $[M] + [AN] = [CNS] \rightarrow IS$ in Resonance to Central Nervous System.

[C] ⇒ APLICATION OF THE METHOD TO A HEALTHY- CELL

1c., The Flow-charge: [From Breast Total (Normal Cholesterol)]

[M] + [AN] = [LNS] → IS in Resonance to Local Nervous System,

A ≡ The Initial CARRIER - State encodes :

1.. The TATP - Explosive.

= [C9 H18 O6]

The Membrane Mediator .

= [CO2H]n = 6

The Membrane Pathway-Sensor .

= [N O2]

4.. The Membrane Signaling.

= [N H3 C O O]

5.. The Plasma Intracting Ligand Signal . = 2.[N H4] O

B

The Final MODULATING - State encodes:

- 6.. The self Assemble Signal Membrane, = [N P O4 H O2 O2]
- 7.. The Building Blocks of the Membrane, = O C [C H2]17 + O C [C H2]17
- 8.. The Polar and Flavoring Glues -Agent, = C O H [COH]4 + [CH2OH].
- 9.. The Membrane Lipid Protein Plasma, = [PO4]+[CH2]2+CHO2C2 +HO +H4

+ CH3 [CH2]17 + COOH

+ CH3 [CH2]17 + COOH

Cancer Cell Membrane

+ P [H O]2 + O2 + O2

10.. Any Normal or Dangerous Atom or Compound d.ATP of 4. [C10 H12 N5 O12 P4]

 $C \equiv \text{The MODULATED}$ - State encodes $\equiv A + B \pm \text{Energy}$

 $D \equiv The DEMODULATING - State encodes \equiv A + B + 10 = Any Normal or Dangerous$

Atom or Compound ≡ Antidote ≡ 4.[C10 H12 N5 O12 P4]

2c., The Results of Actions from P= 6:

⇒ a ⇒ The Sending of an Explosive into an Normal and a Healthy Cell.

a...INITIAL ACTION \equiv [The TATP - Explosive] \Rightarrow [(1) + (2) + (3) + (4) + (5)]

- b...FINAL ACTION = [The Self Assemble SM] \Rightarrow [(6) + (7) + (8) + (9) + (10)]
- c... COMPARATIVE ACTION ≡ INITIAL ⇒ FINAL ≡ COMPLEMENTARY
- d...ANTIDOTES ACTION ⇒ THE DEMODULATED FM WAVEFORM
 The TATP-Explosive enters the Cell by ,
- 1... The Carrier's Wave Ascending motion,
- 2...The Combining of the Antidotes Resonance-frequency, to that of the Natural frequency of the Nucleus.
- a ⇒ TATP –Explosive [C9 H18 O6] occupies an W _{TATP} = 6,51.10¹⁵ Hz The Initial Action of the System = [THE CARRIER WAVE] occupies an W _{INIT} = 45,80.10¹⁵ Hz & an Energy – Spectrum E – S _{INIT}, [Sheet-4]
- b \Rightarrow The Final Action of the System [THE **MODULATING** WAVE] occupies an W $_{\text{FINAL}} = 144,76.10^{15} \text{ Hz}$ & an Energy-Spectrum E S $_{\text{FINAL}}$, [Sheet-5 , 6] while The Self Assemble SM = [NPO4HO2O2], [Sheet-7 , 8]. occupies an W $_{\text{SASM}} = 14,07.10^{15} \text{ Hz}$,
- c \Rightarrow The Complementary \pm Energy of the System [THE MODULATED WAVE], Demands an W_{COM}=197,8.10¹⁵Hz AND an [DEMODULATING WAVE], of Energy-Spectrum E - S _{DEMOD}, [Sheet-9] with W_{DEMOD} = 243,71.10¹⁵ Hz
- d 1 ⇒ The 1-Antidote encodes, The TATP-Explosive, [Sheet-10] with the Exact Resonance frequency as, [Sheet-11].
- d 2 ⇒ The 2-Antidote encodes, The TATP-Explosive, [Sheet-12] with the Exact Resonance frequency as, [Sheet-13].
- d 3 ⇒ The 3-Antidote encodes, The TATP-Explosive, [Sheet-14] with the Exact Resonance frequency as, [Sheet-15].
- d 4 ⇒ The 4-Antidote encodes, The TATP-Explosive, [Sheet-16] with the Exact Resonance frequency as, [Sheet-17].
- d 5 ⇒ The 5-Antidote encodes, The TATP-Explosive, [Sheet-18] with the Exact Resonance frequency as, [Sheet-19].
- d 6 ⇒ The 6-Antidote encodes, The TATP-Explosive, [Sheet-20] with the Exact Resonance frequency as, [Sheet-21].
- d 7 ⇒ The 7-Antidote encodes , The TATP-Explosive , [Sheet-22] with the Exact Resonance frequency as , [Sheet-23] .
- b 1 ⇒ The Self Assemble SM = [NPO4HO2O2] occupies an W_{SASM} = 14,07.10¹⁵ Hz The Final Action of the System = [THE MODULATING WAVE] occupies an W_{FINAL} = 242,39.10¹⁵ Hz & an Energy – Spectrum E – S_{FINAL}, [Sheet-26]
- b 2 \Rightarrow The Self Assemble SM = [NPO4HO2O2] occupies an W $_{SASM}$ = 14,07.10 15 Hz

- The Final Action of the System = [THE **MODULATING** WAVE] occupies an W $_{\text{FINAL}}$ = 242,39.10¹⁵ Hz & an Energy Spectrum E S $_{\text{FINAL}}$, [Sheet-26]
- b 3 ⇒ The Self Assemble SM = [NPO4HO2O2] occupies an W _{SASM} = 14,07.10¹⁵ Hz The Final Action of the Cancered -System = 15.d.ATP = 15.[C10 H12 N5 O12 P4] [THE MODULATING WAVE] occupies an W _{FINAL} = 34,58.10¹⁵ Hz & an Energy – Spectrum E – S _{FINAL}, [Sheet-28]
- d 1-3 ⇒ The 1-Antidote encodes, The TATP-Explosive, [Sheet-27] with the Exact Resonance frequency as, [Sheet-28].
- d 2-3 ⇒ The 2-Antidote encodes, The TATP-Explosive, [Sheet-29] with the Exact Resonance frequency as, [Sheet-30,31].
- [D] ⇒ APLICATION OF THE METHOD TO A SEMI HEALTHY CELL

 ⇒ b ⇒ The Sending of an Explosive into an Semi Cancerous Cell.

 1d., The Flow-charge: [From Breast Total (Bad Cholesterol)]

 [M] + [AN] = [LNS] → IS in Resonance to Local Nervous System,
- d 1 ⇒ The BREAST TOTAL CANCER FROM BAD-CHOLESTEROL occupies an W_{SASM} = 18,36.10¹⁵ Hz . The Final Action of the System = [THE MODULATING WAVE] occupies an W_{FINAL} = 32,59.10¹⁵ Hz & an Energy – Spectrum E – S_{FINAL}, [Sheet-32]
- d 1 ⇒ The 1-Antidote encodes , The SYMEWN-Abrahane , [Sheet-33] with the Exact Resonance frequency as , [Sheet-33] .
- d 2 \Rightarrow The 2-Antidote encodes , The SYMEWN-IN BLOOD , [Sheet-34] with the Exact Resonance frequency as , [Sheet-34] .
- d 4 ⇒ The 4-Antidote encodes , The EU-GISPLATIN HEMOTHERAPY , [Sheet-35] with the Exact Resonance frequency as , [Sheet-35] .

[E] ⇒ APLICATION OF THE METHOD TO A BAD- CHOLESTEROL CANCEROUS - CELL

⇒ c ⇒ The Sending of an Explosive into an -Cancerous Cell . 1e., The Flow-charge: [From Breast Total (Cancerous Cholesterol)] [M] + [AN] = [LNS] → IS in Resonance to Local Nervous System, c ⇒ The INITIAL BREAST is W $_{INITIAL}$ =18,36.10 15 Hz [THE MODULATED WAVE], is W $_{FINAL}$ =3,98.10 15 Hz Complementary ± Energy of the System Demands an W $_{COM}$ =28,74.10 15 Hz AND an [DEMODULATING WAVE], of Energy-Spectrum E – S $_{DEMOD}$, [Sheet-36] with W $_{DEMOD}$ = 47,08.10 15 Hz

- d 29 ⇒ The 29-Antidote encodes, The SYMEWN-Pralsetinib, [Sheet-37] with the Exact Resonance frequency as, [Sheet-37].
- d 23 ⇒ The 23-Antidote encodes, The SYMEWN-CHEMOTHERAPY Docetaxel, [Sheet-38] with the Exact Resonance frequency as, [Sheet-38].
- d 218 ⇒ The 4-Antidote encodes, The EU GISPLATIN HEMOTHERAPY, [Sheet-39] with the Exact Resonance frequency as, [Sheet-39].
- [F] ⇒ APLICATION OF THE METHOD TO A CANNABINOID BREAST CANCER FROM THE SPREAD - CANCEROUS - CELLS.
 - ⇒ c ⇒ The Sending of an Explosive into an -Cancerous Cell.

 1f., The Flow-charge: [From Breast Total (Cannabinoid Breast Cancer)]

 [M] + [AN] = [CNS] → IS in Resonance to Central Nervous System.

Conclusions:

- 1...The JOURNEY of TATP Explosive, begins from the CARRIER-WAVE, which Is accompanied with the [(1) + (2) + (3) + (4) + (5)] Side-Band Waves, becoming from the demands of the Journey circumstances.
- 2...Along the Way, the CARRIER-WAVE, is attacked by attackers=Side-Band Waves \equiv [THE **MODULATING WAVE**] \equiv [(6) + (7) + (8) + (9) + (10)], and finally becomes [THE **MODULATED** WAVE] \equiv [(1) + (2) + (3) + (4) + (5)] \pm [(6)+(7)+(8)+(9)+(10)]
- 3...This [MODULATED WAVE] reaches its destination, which is the Cell-Membrane.
 At the door guard-1 asks for the entry code. Upon entering, guard-2 asks for the Pass code and at the main-door of the CELL, guard-3 asks for the Entry code in the CELL.
- 4a...When in Cell, the DNA is Normally Functioning, then TATP creates vapor traces. TATP is trapped within the MODULATED WAVE, and in order to act it needs to separate from 1-System into another 2-System in order to Act. 2-Systems are the Antidotes that contain the TATP structure.
- 4b... When in Cell, and DNA is Functioning with BAD-Cholesterol, then TATP creates vapor traces and in order to Act needs. Antidotes that contain the, TATP structure.
- 4c... When in Cell, and DNA is Functioning with VERY-BAD Cholesterol, then TATP creates vapor traces and in order to Act needs. Antidotes that contain the TATP...
- 4d... When in Cell, and DNA is Functioning with CANSEROUS DNA, then TATP creates vapor traces and in order to Act needs Antidotes that contain the TATP structure, for creating vapor traces in Cell destroying the cancer.

Antidotes that contain the TATP-Explorer must Resonance with the **Modulated Wave**, Antidotes that contain the TATP-Explorer, with Frequency > **Mod-Wave**, are **Active**. Antidotes that contain the TATP-Explorer, with Frequency < **Mod-Wave** are **Neutral**.

[G] ⇒ APLICATION OF THE METHOD TO THE → ONE-ARRANGMENT ←

The ONE-MODE of the PROGRAM → The Athwart Vibration Spectrum ←

1g., The Flow-charge: [From (Common Existing)]

[M] + [AN] = [LNS] -> IS in Resonance to Local Nervous System,

A

The Structural-Properties of Molecules:

- 1.. The ACETATE- Formula.
- = [C H3 CO O] + C
- d 1 \Rightarrow The Resonance –Mode \equiv The Athwart Vibrating-Spectrum, [Sheet-2A] with the Exact Resonance frequency W _{RESONANCE} =10,42.10¹⁵Hz
- 2.. The ALLYL . CATION- Formula .

= [CH2-CH-CH2]

- d 2 ⇒ The Resonance –Mode ≡ The Athwart Vibrating-Spectrum , [Sheet-3B] with the Exact Resonance frequency W _{RESONANCE} = 9,10 .10¹⁵Hz
- 3.. The BENZENE Formula.

= [C6H6-C6H6 = 3.(C2H2)+3.(C2H2)]

- d 3 ⇒ The Resonance –Mode = The Athwart Vibrating-Spectrum , [Sheet-4C] with the Exact Resonance frequency W _{RESONANCE} = 28,86 .10¹⁵Hz
 - 4.. The OZONE Formula .
- = [O O O + O O O]
- d 4 ⇒ The Resonance –Mode ≡ The Athwart Vibrating-Spectrum , [Sheet-5] with the Exact Resonance frequency W _{RESONANCE} = 3,23 .10¹⁵Hz
- 5.. The CHEMICAL Formulas . =
 - = [Sheet-6, 7]
- d 5 \Rightarrow The Resonance –Mode \equiv The Athwart Vibrating-Spectrum, [Sheet-6] with the Exact Resonance frequency W_{RESONANCE} = 1-3.10¹⁵Hz
- [H] ⇒ APLICATION OF THE METHOD TO THE → BRAIN RECEPTORS ← The ONE-MODE of the PROGRAM → The Athwart Vibration Spectrum ← 1h., The Flow-charge: [From Deceptioning the Cells + Brain Aphasia]
 [M] + [AN] = [CNS] → IS in Resonance to Central Nervous System.
- \Rightarrow c \Rightarrow The Sending of an GABA-Receptor \equiv [C4H9NO2] into The CNS of BRAIN . The CARRIER – WAVE IS the GABA - Receptor + Serotonin + Dopamine
- A = The Serotonin Neurotransmitter = [C10 O1 H12 N2]
- B ≡ The Dopamine Neurotransmitter ≡ [C8 H11 N O2]
- C = The Modulating-Wave IS Myelin (MOG) = [C80H105N21O27S]+Neurotransmitter

 (Ach) = [C7 H16 C1 N O2] + SARM-2 = [C2N2O2F3H]+ SOMA = [C12 H24 N2C4]

 AXON = [O2 O2 P O4 N] +[HONHOPO4N]+[HONHOH5O6]+ SARM1 =N3O3F3H2

 + SARM2 = C2N2O2F3H + NMNAT2 =N2OH2 + O3H2+PO4H + DENDRITE =
 N6 O3 H5 +N2 O H3 +N4 O2 H4 +N2 O H3 +N7 O3 H5 +N2 O H3 +N4 O2 H4+
 N2 O H3 +N6 O3 H5 +N2 O H3 +N4 O2 H4 +N2 O H3 + N7 O3 H5 +N2 O H3 +
 N4 O2 H4 +N2 O H3 .

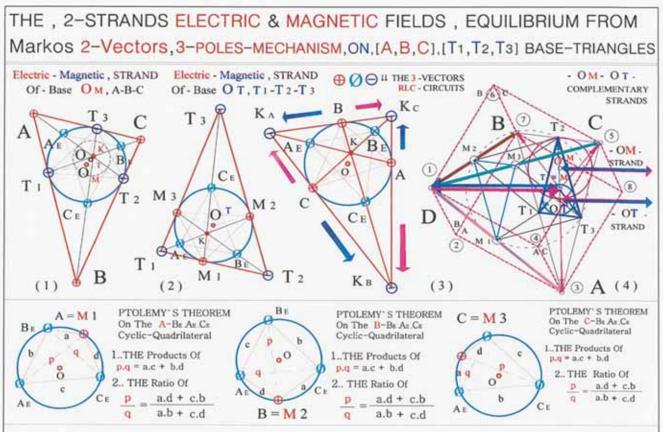
D \equiv The Modulating-Wave IS Myelin MOG+Ach+SOMA+AXON+SARM1+NMNAT2 E \equiv The Modulating-Wave IS Myelin MOG+Ach+SOMA+AXON+SARM1-2+NMNAT2

[1] ⇒ APLICATION OF THE METHOD TO THE → BRAIN - RECEPTORS ←

The ONE-MODE of the PROGRAM → The Athwart Vibration Spectrum ←

1i., The Flow-charge: [From Deceptioning the Cells + Brain Aphasia + [L+G] – Drugs.

[M] + [AN] = [CNS] → Is in Resonance to Central Nervous System.


 \Rightarrow c \Rightarrow The CARRIER – WAVE $\,$ IS $\,$ the GABA - Receptor + Serotonin + Dopamine Neurotransmitters with W $_{CARRIER}$ = 21,54.10 $^{15} Hz$. The Modulating-Wave is , MOG ,

Soma , Sarm.1-2 , Dendrite with W $_{MODUL}$ = $868,34.10^{15} Hz$, and Modulated-Wave = W $_{MODULATED}$ = $1715,15.10^{15} Hz$, with all uncoupled and signaling Systems .

- 1.. From General Anesthesia Ketamine Formula = 27.[C13 H16 Cl N O]
- d 1G \Rightarrow The Resonance –Mode \equiv The Athwart Vibrating-Spectrum, [Sheet-1G] with the Exact Resonance frequency W _{RESONANCE} = 1715,97.10¹⁵Hz
 - 2.. From Local Anesthesia Cocaine Formula = 59.[C17 H21N O4]
- d 1L ⇒ The Resonance –Mode ≡ The Athwart Vibrating-Spectrum, [Sheet-1L] with the Exact Resonance frequency W_{RESONANCE} = 1715,15.10¹⁵Hz
 2.. From Local Anesthesia Ropivacaine Formula = 59.[C17 H21N O4]
- d 2L \Rightarrow The Resonance –Mode \equiv The Athwart Vibrating-Spectrum, [Sheet-2L] with the Exact Resonance frequency W _{RESONANCE} = 1715,15.10¹⁵Hz

THE METHOD:

- 1...Can Immediately give the Energy-Spectrum of Any Chemical-Compound
- 2...Can Immediately give the Energy-Spectrum of Any Chemical-Actions .
- 3...Can Immediately give the Energy-Spectrum of Any Existing Drug .
- 4...Can Immediately TEST the Efficiency of Any Existing Drug .
- 5...Can Immediately TEST the Efficiency of Drugs and Suggests the Best Improve .
- 6...Can Immediately Suggest NEW Drugs and Suggests their Best Improve .
- Can Immediately find the Resonance Paths of Energy IN any Energy level .

BASE , ABC , Of Circle $\{O\ M\ , \Gamma\ M\}$ IS CONSISTED OF 6 - CONDUCTORS A-T1 , B-T2 , C-T3 , A-T3 , C-T2 , B-T1 SUB -UNITS FOR EACH SPACE-POINT , A , B , C , ON RLC - CIRCUIT And For Opposite-Position STATIONARY - BASE - T1 , T2 , T3 . TRIANGLE IS CONSISTED OF 6 - CONDUCTORS , T1 - M3 , T2 - M1 , T3 - M2 , T1 - M2 , T3 - M1 , T2 - M3 , ANTI - SUB - UNITS , FOR EACH SPACE - POINT , -T1 , T2 , T3 - ON RLC - CIRCUIT OF 6x3 = 18 Energy -Positions , And FOR ALL 2x18 = 36 Energy -Positions . THE 36 Conductors Follow The Stress Relation , $\sigma = v/\Phi = w(r/\Phi) = \Phi$, Φ , IN THE SPIRALLING TETRAHEDRON , D , A , B , C - DOUBLE - HELIX , AS Φ ELE - Φ = DOM - ABC , B MAG - Φ = DOT -T1, T2, T3 . The Φ 36 , SUB- UNITES , are WAVES which Transport MOTION = ENERGY AND The PATTERN OF DISTURBANCES WITH , INFORMATIONS , HALVED - FROM ONE TO OTHER POINT , WHICH EQUILIBRIUM .

Figure -2-: The Electric and Magnetic Field of 3 Conductors On 2 Anti-Parallel-Strands The Waves - Motion \equiv Energy, is Transported and, The Pattern of Disturbances

with Informations, Propagates from the One-Edge-Point to the other Edge-Point of Conductors, OR is on [Sub-Units].

F... REFERENCES:

- Matrix Structure of Analysis by J.L.MEEK library of Congress Catalog 1971.
- [2] Der Zweck im Rect by Rudolf V. Jhering 1935.
- [3] The great text of J. L.Heisenberg (1883-1886) English translation Richard Fitzpatrick
- [4] Elements Book 1.
- [5] Wikipedia.org, the free Encyclopedia.
- [6] Greek Mathematics, Sir Thomas L.Heath, Dover Publications, Inc., New York, 63-3571
- [7] [T] Theory of Vibrations by William T. Thomson (Fourth edition).
- [8] A Simplified Approach of Squaring the circle, http://www.scribd.com/mobile/doc/33887739

- [9] The Parallel Postulate is depended on the other axioms, http://vixra.org/abs/1103.0042
- [10] Measuring Regular Polygons and Heptagon in a circle, http://www.scribd.com/mobile/doc/33887268
- [11] The Trisection of any angle ,http://vixra.org/abs/1103.0119
- [12] The Euclidean philosophy of Universe, http://vixra.org/abs/1103.0043
- [13] Universe originated not with BIG BANG, http://www.vixra.org/pdf/1310.0146v1.pdf
- [14] Complex numbers Quantum mechanics spring from Euclidean Universe, http://www.scribd.com/mobile/doc/57533734
- [15] Zeno's Paradox, nature of points in quantized Euclidean geometry, http://www.scribd.com/mobile/doc/59304295
- [16] The decreasing tunnel, by Pr. Florentine Smarandashe, http://vixra.org/abs/111201.0047
- [17] The Six-Triple concurrency line points, http://vixra.org/abs/1203.0006
- [18] Energy laws follow Euclidean Moulds, http://vixra.org/abs/1203.006
- [19] Higgs particle and Euclidean geometry, htt://www.scribd.com/mobile/doc/105109978
- [20] Higgs Boson and Euclidean geometry, http://vixra.org/abs/1209.0081
- [21] The outside relativity space energy universe, http://www.scribd.com/mobile/doc/223253928
- [22] Quantization of Points and of Energy, http://www.vixra.org/pdf/1303.015v21.pdf
- [23] Quantization of Points and Energy on Dipole Vectors and Spin , http://vixra.org/abs/1303.0152
- [24] Quaternion's, Spaces and the Parallel Postulate, http://vixra.org/abs/1310.0146
- [25] Gravity as the Intrinsic Vorticity of Points, http://vixra.org/abs/1401.0062
- [26] The Beyond Gravity Forced fields, http://scribd.com/mobile/doc/203167317
- [27] The Wave nature of the geometry dipole, http://vixra.org/abs/1404.0023
- [28] Planks Length as Geometrical Exponential of Spaces. http://vixra.org/abs/1406.0063
- [29] The Outside Relativity Space Energy Universe, http://www.scribd.com/mobile/doc/223253928
- [30] Universe is built only from Geometry Dipole, Scribd : http://www.scribd.com/mobile/doc/122970530
- [31] Gravity and Planck's Length as the Exponential Geometry Base of Spaces, http://vixra.org/abs/1406.0063
- [32] The Parallel Postulate and Spaces (IN SciEP)
- [33] The fundamental Origin of particles in Planck's Confinement. On Scribd & Vixra (FUNDAPAR.doc)
- [34] The fundamental particles of Planck's Confinement. www.ijesi.com (IJPST14-082601)
- [35] Origin of fundamental particles <u>www.ethanpublishing.com(IJPST-E140620-01)</u>
- [36] The nature of fundamental particles, .ijesit.com-Paper ID : IJESIT ID: 1491
- [37] The Energy-Space Universe and Relativity IJISM, ijism.org-Paper ID: IJISM – 294 [V2,I6,2347-9051]
- [38] The Parallel Postulate, the other four and Relativity (American Journal of modern Physics, Science PG – Publication group USA), 1800978 paper.
- [39] Space-time OR, Space-Energy Universe (American Journal of modern Physics, science PG Publication group USA) 1221001– Paper.

- [40] The Origin of ,Maxwell's-Gravity's, Displacement current. GJSFR (Journalofscience.org), Volume 15-A, Issue 3, Version 1.0
- [41] Young's double slit experiment [Vixra: 1505.0105] Scribd: https://www.scribd.com/doc/265195121/
- [42] The Creation Hypothesis of Nature without Big-Bang. Scribd: https://www.scribd.com/doc/267917624
- [43] The Expanding Universe without Big-Bang. (American Journal of modern Physics and Applications Special issue: http://www.sciencepublishinggroup.com/j / Science PG-Publication group USA – 622012001– Paper.
- [44] The Parallel Postulate and the other four, The Doubling of the Cube, The Special problems and Relativity. https://www.lap-publishing.com/.
 E-book. LAMBERT Academic Publication.
- [45] The Moulds for E-Geometry Quantization and Relativity, International Journal of Advances of Innovative Research in Science Engineering and Technology IJIRSET: http://www.ijirset.com/. Markos Georgallides
- [46] [M] The Special Problems of E-geometry and Relativity http://viXra.org/abs/1510.0328
- [47] [M] The Ancient Greek Special Problems as the Quantization Moulds of Spaces. www.submission.arpweb.com(ID-44031-SR-015.0
- [48] [M] The Quantization of E-geometry as Energy monads and the Unification of Space and Energy . www.ijera.com(ID-512080.0
- [49] [51] The Why Intrinsic SPIN (Angular Momentum) ½ -1, Into Particles. www.oalib.com(ID-1102480.0
- [50] [M] The Kinematic Geometrical solution of the Unsolved ancient –Greek Problems and their Physical nature http://www.jiaats.com/paper/3068.ISO 9001
- [51] [M] The Nature of Geometry the Unsolved Ancient-Greek Problems and their Geometrical solution Error! Hyperlink reference not valid. http://www.oalib.com/Journal:paper/1102605
- [52] E-Geometry, Mechanics-Physics and Relativity, http:gpcpublishing.com/GPC: volume 4, number 2 journal homepage
- [53] Material-Geometry and The Elements of the Periodic-Table www.ijerm.com(ID-0306031.0)
- [54] The Material-Geometry Periodic Table of Particles and Chemistry .http://ijemcs.in/
- [54] The Material-Geometry A-Periodic Table of Particles and Chemistry. www.iosrjournals.org)
- [55] Material-Geometry, the Periodic Table of Particles & Physics, http://ephjournal.com
- [56] Big-Bang or the Glue-Bond of Space, Anti-space??. (www.TechnicalDean.org)
- [57] The Eternal Glue-Bond of Space ,Anti-space ,Chemistry and Physics www.globaljournals.org .
- [58] Big-Bang or the Rolling Glue-Bond of Space ,Anti-space , book@scirp.org ,http://www.scirp.org/
- [59] STPL Mechanism is the Energy Space Generator . http://viXra.org/abs/1612.0299
- [60] The Chaos becomes Discrete through the STPL mechanism which is Energy-Space Generator (http://www.ijrdo.org/)
- [61] The How Energy from Chaos becomes Discrete Monads http://www.ephjournal.net/
- [61-A] The How Energy from Chaos, becomes Discrete Monads. http://www.ijrdo.org/

- [62-B] The Geometrical solution of All Regular n-Polygons . http://www.irjaes.com/
- [62] The Geometrical Solution of All Odd Regular Polygons, and the Special Greek problems http://www.irjaes.com/
- [63] The Geometrical Solution of All Odd Regular Polygons, the Special Greek Problems and their Nature. http://www.ijerd.com/
- [63] [A] The Geometrical Solution of The-Regular Polygons, the Special Greek Problems and Their Nature. http://vixra.org/
- [63] [B] The Geometrical Solution of The-Regular Polygons, the Special Greek Problems and Their Nature (http://iosrmail.org/)
- [64] [A] The How energy from chaos becomes the → Spin , of the Discrete Elementary monads , http://www.i-b-r.org, / .??
- [64] The How energy from chaos becomes the → Spin , of the Discrete Elementary monads : (http://www.ijrdo.org/)
- [65] The Spin of monads and their Energy-Stores . www.ajer.org .
- [66] The Energy-Stores in Photon . http://www.i-b-r.org. / .???
- [67] The Energy Structure of Atoms and Photon . http://viXra.org/.
- [68] The Moving Energy Storages and Photon . www.sfjqp.com
- [69] The Moving and the Stationary Particles . http://science MPG
- [70] The How Energy from Chaos becomes the Spin of Monads and Photon http://www.ijrdo.org/
- [70] Energy from Chaos becomes the Spin of Monads & Photon ,http://science MPG
- [70] The How Energy from Chaos becomes the Spin of Monads and Photon . www.ijera.com .
- [71] The Gravity and Photons . http://asir@sholink.org
- [72] The origin of Gravity and universe . [mailto:editorusa@globaljournals.org]
- [72A] [M] The Origin of Gravity Gravitational Constant and Universe . <u>http://saiconference.com/FTC</u>
- [73] [M] Planck's Constant, The Gravitational and Gravity Constant. : https://ijrdo.org/index.php/mce/issue/current
- [74] [M] The Newtonian Constant of Gravitation and Gravity Constant . www.iosr.Org
- [75] [M] The Newtonian Constant of Gravitation and Gravity Constant. The Physical Interpretation http://science MPG
- [76] [M] The Newtonian Constant of Gravitation Gravity Constant, and The Galileo Principia http://www.i-b-r.org. / .
- [76A] [M] Origination of The Nutation-motion, and Atom-model .http://www.i-b-r.org. /.?
- [77] [M] The Newtonian Constant of Gravitation and Gravity Constant. Their Physical Interpretation ...
- [78] [M] The Physical Interpretation of Gravity-Constants, Electron and Photon https://saiconference.com/FICC2020/Submit
- [79] [M] The Planck's Constant and Speed of light . http://science MPG
- [80] [M] The Origination of the Nutation-motion, the New-Energy-Atom-Model and the United-Coulomb-Newton-Laws for Interaction. https://www.akinik.com/publishbookchapter/-research
- [81] [M] The Physical Interpretation of Gravity Constant, Electron and Photon https://www.scribd.com/doc/
- [82] [M] The Physical Interpretation of Gravity Constant, Electron and

Chemistry http://science MPG

- [83] [M] The EPR Argument and The Quantization of Energy in Spaces http://www.ajer.org/volume9 issue 1.html
- [83A] [M] The EPR Argument under the Critic of Material-Geometry and Elementary Particles., http://www.ajer.org/volume9 issue 1.html
- [84] [M] The unification of Energy-monads, Black Holes, with Geometry Monads, Black Matter, through Automobile Forces in monads.
- [85] [M] Quantization of Points and Potential and the Unification of Energy-Space .
- [86] [M] [M] The Physical Interpretation of Gravity Constant, and Applications in Chemistry http://scienceMPG
- [87] [M] Photon Particle, Photon Wave Or Duality Photon? and Applications http://vixra.org/abs/2003.0601
- [87] [M] Photon Particle, Photon Wave Or Duality Photon? and Future Technologies https://www.scribd.com/doc/1/
- [87B] [R] Photon Particle, Photon Wave Or Duality Photon? An Answer to WHY and HOW is the Objective-Reality www.IJRDO-Journals.org)
- [88] [M] The Origination of Nutation motion and a New Electromagnetic Structure of Atom http://science MPG
- [89] [M] The Wave & Particle Duality Photon and Elementary Particles Origination. http://science MPG = Markos Georgallides
- [89A] [M] The Duality Photon and The Physical Interpretation of Photon Spectrum http://science MPG ≡ Markos Georgallides
- [91] [M] The Origin of The Fundamental-Particles in Planck's Confinement . http://science MPG ≡ Markos Georgallides
- [92] [M] The Wave & Particle Duality-Photon and Elementary Particles-Origination. www.IJRDO-Journals.org), http://science MPG ≡ Markos
- [93] [M] The Fundamental-Particles and the Fundamental-Forces of Nature . http://science MPG = Markos Georgallides
- [94] [M] The Cosmic-Particles Origination and their Bonding ,
- [95] [M] The Wave and Particle Duality Photon, Cosmic-Particles-Origination and their Bonding STAIR AWARDS 2021
- [294] [M] The Wave & Particle Duality Photon, Cosmic-Particles Origination and their Bonding http://science MPG = Markos
- [95] [M] The How Intensity-Squares of Electromagnetic-Cosmic-Particles follow Quadrature of Square-Prism to Equivalent-Energy-Sphere-Cone, http://vixra.org/3/2021
- [96] AA The Wave and Particle Duality Photon, Cosmic-Particles-Origination and their Stability In Cosmology < ejas@scholarpublishing.org >
- [97A] [M] Duality Photon and the Mechanical and Chemical, DNA-Helix, Construction Functions< ejas@scholarpublishing.org >, http://science MPG = Markos Georgallides
- [97B] [M] The Duality Photon, DNA, and the Cruise-Missile Elementary-Particles, Conductors, http://science MPG = Markos Georgallides
- [98A] [M] The Nature of Greek-Special-Problems & their functioning in Electromagnetic

- Forces In DNA Conductors , https://www.lap-publishing.com/. E-book. LAP LAMBERT Academic Publication .
- [98B] [M] The Why, the How and When, the Atoms Bond. http://science MPG \equiv Markos Georgallides
- [99A] [M] The How, Why and When, the Atoms Bond. https://mts.Intechopen.com.book.process/ = Dragan Miljak
- [99AAA] [M] The How, Why and When, the Atoms Bond. http://science MPG \equiv Markos Georgallides
- [99CCC] [M] The 4-Frequencies of Atoms Bonding related to Octave Periodic-Table . <u>http://science MPG = Markos Georgallides</u>
- [99] [M] The Bonding of Cosmic-Particles and Resonance Photoelasticity, <u>http://science MPG = Markos Georgallides</u>
- [101] [M] The Why and How Atoms and Compounds Bond, and Chemistry-Programming
- [102] [M] The Markos-Method of Conservation of Motion = Energy, by Division.
- [103] [M] The Markos-Method of Conservation of Motion in Nature and Medicine.
- [104] [M] Programming of Atoms and their Compounds and their Modulated-Energy, http://science MPG = Markos Georgallides
- [105] [M] The ERP Argument, Under the Critic of the Material—Geometry AND, The Space Energy Universe.
- [106] [M] Programming the Atoms and Compounds and the Unification of Physics AND Chemistry ["JMSEAT 2024"] atul@scientificadvances.co.in
- [106] [M] Programming the Atoms and Compounds and the Unification of Physics AND Chemistry —- ASRP.hspublishing@gmail.con
- [107-A] [M] The Planck's << Duality Angular Momentum >> as GRAVITY and .

 ANTIGRAVITY <<u>editor@granthaalayah.com</u>> Research International Journal
- [107] [M] The Planck's << Duality Angular Momentum >> as GRAVITY and ANTIGRAVITY http://science MPG = Markos Georgallides
- [108] [M] The Planar and Atoms Black Holes , Under the Critic of Material-Geometry & Planck—Dual Spin as Gravity-Antigravity ejas@scholarpublishing.org
- [109] [M] The DUAL Quaternion Momentum -B as { The Existing Universe } & The Black -Holes, ejas@scholarpublishing.org
- [110] [M] The Origination-Mechanism of Fundamental Particles in the Energy-Planck's Confinement and their existence, http://science MPG = Markos Georgallides
- [110] [M] The Origination of, Matter Antimatter in the Beyond Planck`s-Length Energy-Space-Universe and the nature of Antimatter by http://science MPG
- [111] [M] The Polynomials , n-Knots Figures , Edge Points Vibration & M-Geometry . by <u>IJO@publishing.org</u>
- [112] [M] The Polynomials , n-Knots Figures , and Edge Points Vibration Knots by https://www.GPH-publishing.com/.
- [113] [M] The Origination of Universe from Energy \equiv Motion into the E-Geometry . by http://science MPG \equiv Markos Georgallides
- [114] [M] An Way for Deceptioning the Normal OR the Dangerous Cells by https://www.GPH-publishing.com/.

- [115] [M] The Origination of Universe from Energy \equiv Motion into the E-Geometry . by http://science MPG \equiv Markos Georgallides
- [116] [M] The Comparative Results of the Effectiveness of the Anticancer Drugs, using an Electron Program Rapture Diana@eresearchpaper.com
- [117] [M] The Universe from Zero Energy to Motion, and the E-Geometry to Chaos by http://science MPG ≡ Markos Georgallides

Markos Georgallides comes from Cyprus and currently resides in the City Larnaca, Cyprus after being expelled

from his Home Town **Famagusta-Varosha**, by The Barbaric Turks in August 1974. He works as a consultant Civil and Architect Engineer having his own Business . He is also The author of numerous scholarly Articles focusing on **Euclidean** and **Material Geometry**, and mathematical To Physics and Mechanics related Subjects . He obtained his degree from the Athens , National Technical , Polytechnic University [NATUA] Athens- Greece , and subsequently studied in Germany , Math Theory of Photoelasticity .

Program Pages $\rightarrow 1-15$

Web Pages $\rightarrow 1-11$

Program Sheets $\rightarrow 1-39$

The ONE-RULE Chemistry-Resonance & DRUGS in BRAIN, Sheets \rightarrow [1]–[17] \Rightarrow The Suspending of Signals to BRAIN-Neurotransmitters, Sheets \rightarrow D1 – D14 \Rightarrow

Conclusion-1:

TATP-Explosive, enters the Cell through,

- 1...The Ascending motion of the Carriers, or from the Modulated Wave,
- 2... The Jumping on the neurotransmitters of Brain and coupled with them through the Miming-coupling *or from its Voltage Transformer which is their LC Circuit*, it is the success to activate the Brain neurotransmitters.
- 3... The Combination of the Antidotes Resonance-frequency as this happens from its Local Transformer, to that of the Natural frequency of the Nucleus.

Conclusion-2:

EU-GISPLATIN ANTIDOTE, enters the Cell,

- 1... Through the Ascending motion of the Modulated Wave,
- 2... The Antidote Modulates the neurotransmitters of Brain by Jumping on them, and be coupled through the Miming-coupling or from its Voltage Transformer which is their LC Circuit, which is the success to activate the Brain neurotransmitters.
- 3...The Combination of the Antidotes Resonance-frequency as this happens from its Local Transformer, to that of the Natural frequency of the Nucleus.

1137 E-mail: pcfrangou@hotmail.com

Residence Tel. (403) 374-2596

Fax (403) 374-1137

P.E.Frangou, M.B., Ch.B., MRCS(Eng), LRCP(Lond), LMCC, CCFP, FRCS(Ed)
79 Edgeridge Park NW
Calgary, Alberta
T3A 6A9

July20, 2025

To Whom It May Concern . Re: Article 114 by Marcos Panayiotou Georgallides

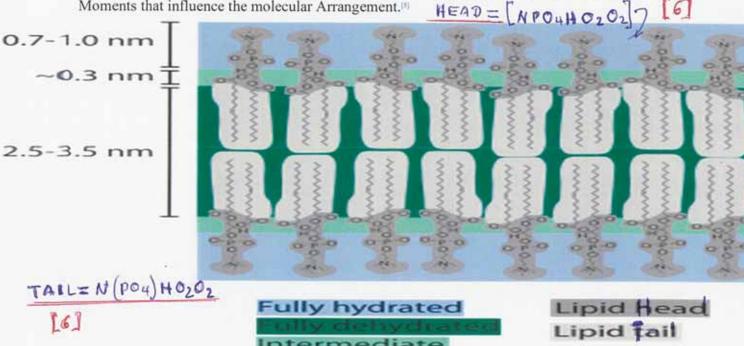
I was amazed by the details contained in the above article based on current knowledge and extrapolations inspired by the intellectual proclividies of the author.

It appears to me that further research based on the avenues that are implied by the article may lead to clinically applicable advances in chemical oncology, neurology, anesthesia and possibly other medical disciplines for the benefit of suffering humanity.

P.E. Frangou

AN MEDICAL REPORT RELATED TO

ARTICLE 114-DECEPT


CONCERNING THE WAY FOR DECEPTIONING

THE NORMAL OF CANCERED CELLS

BY VIBRATIONS

THE CELL MEMBRANE

Schematic Cross Sectional Profile of a typical lipid bilayer. There are three distinct regions: The Fully Hydrated Headgroups, the Fully Dehydrated Alkane core and a Short Intermediate Region with partial hydration. Although the Head groups are Neutral, they have significant Dipole Moments that influence the molecular Arrangement. [8]

The lipid bilayer is very thin compared to its lateral dimensions. If a typical mammalian cell (diameter ~10 micrometers) were magnified to the size of a watermelon (~1 ft/30 cm), the Lipid Bilayer making up the Plasma Membrane would be about as thick as a piece of office paper. Despite being only a few nanometers thick, the bilayer is composed of several distinct chemical regions across its cross-section. These Regions and their Interactions with the Surrounding water have been characterized over the Past several decades with X-ray Reflectometry, Neutron Scattering, And Nuclear magnetic Resonance techniques. The first Region on either side of the Bilayer is the Hydrophilic Headgroup. This Portion of the membrane is completely Hydrated and is typically around 0.8-0.9 nm thick. In Phospholipid bilayers the Phosphate group is located within this Hydrated region, approximately 0.5 nm outside the Hydrophobic core. In some cases, the Hydrated region can extend much further, for instance in lipids with a large Protein or long sugar chain grafted to the Head. One common example of such a modification in Nature is the Lipopolysaccharide coat on a Bacterial Outer Membrane.

Cell signaling

Typically, the signaling process involves three components: the signal, the receptor, and the effector. In biology, signals are mostly chemical in nature, but can also be physical cues such as <u>pressure</u>, <u>voltage</u>, <u>temperature</u>, or light. Chemical signals are molecules with the ability to bind and activate a specific <u>receptor</u>. These molecules, also referred to as <u>ligands</u>, are chemically diverse, including <u>ions</u> (e.g. Na*, K*, Ca²*, etc.), lipids (e.g. steroid, prostaglandin), peptides (e.g. insulin, ACTH), carbohydrates,

Ligands are Specific Receptors as the COH+ (COH) a which are Glues and Flavoring Agents to the Polar Agents CHZOH which control Receptors. [8]

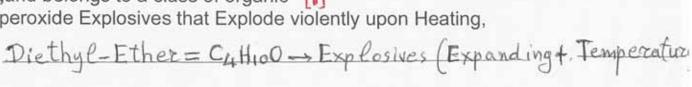
Formula	Chemical Name	Туре	
EMF	Electromagnetic Field	EMF	Urbar
α-, β-, γ, Χ	Radiation Monitor	Geiger Counter	Minin
PM	Particulate Matter, PM 1, 2.5, 4, 10	Laser Scattered	Urbar
Не	Helium	Microthermal	Leak
CO2	Carbon Dioxide	NDIR	Safet
CH4	Methane	NDIR	Safet
N2O	Nitrous Oxide	NDIR	Urbar
VOCs	Total Volatile Organic Compounds	PID	Waste
RN	Radon Gas	Pulsed Ion	Indoo
C6H6	Benzene	Selective Filter	Indus
CH4	Methane	TDLS	Green

Electro-Polymer: Recommended Sensors for CTmini & Aqmini

Molecular electronic Transducers

NH -00- HN

Mediator (coactivator)


Cytokines = [HNH -NHN] n

Thermochemical mediator of pre-biotic ...

= [CO2H] n = 6

TATP has the chemical formula C9 H₁₈ O₆ and belongs to a class of organic [i]

peroxide Explosives that Explode violently upon Heating,

Absorbance 8.0

0.0-

400

0-2 Equiv F

500

Wavelength /nm

700

600

-9 Equiv F

Process		Events per day per cell	Reference
Depur	ination	2-10 000	Lindahl & Nyberg (1972)
Cytosi	ne deamination	100-500	Lindahl & Nyberg (1974)
Alkyla	tion (S-adenosylmethionine)	≈600	Lindahl & Barnes (2000)
Oxida	tive adducts	≈150 000	Beckman & Ames (1997)

Mrn-Atm Pathway Membrace inhibitor, mirin C10 H8 N2 O2 S]

Chemical Sensor Technology [LASER SCATTERED-METAL OXIDE SENSOR-ELECTROCHEMICAL]

components.

Formula	Chemical Name	Туре		
со	Carbon Monoxide	Electrochemical	Urbar	
CI2	Chlorine	Electrochemical	Safet	
H2	Hydrogen	Electrochemical	Indus	
HCI	Hydrogen Chloride	Electrochemical	Indus	
HCN	Hydrogen Cyanide Electrochemical			
РН3	Phosphine	Electrochemical	Indus	
H2S	Hydrogen Sulfide	Electrochemical	Waste	
NO	Nitric Oxide	Electrochemical	Urbar	
NO2	Nitrogen Dioxide [3]	Electrochemical	Urbar	

IGANDS = SYNDESMOI

Ligands = Syndesmos Membranas Kutarou] - CIE A Level Chemistry Revision Notes

Filanium to Copper Ligands .. Ligand formula. Water. H2O. Ammonia. NH3. Chloride.

Pyridine (py) C5 H5 N neutral

Ammonia (ammine or less commonly "ammino") NH3 neutral

Ethylenediamine (en) NH2-CH2-CH2-NH2 neutral 2,2'-Bipyridine (bipy) NC5H4-C5H4N neutral

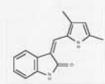
Glycosylated Proteins

etc. Peptide and lipid ligands are hormones belong to these classes

(proteoglycans), nucleic acids, particularly important, as most of chemicals.

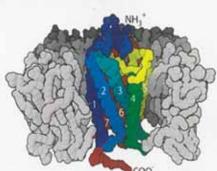
Signalling Protein = 02 CO2.

Snare Proteins = C2 Ca C2., NH3 COO., [4]



Forms of Cell Signaling

Autocrine = [CF]2 + FN + TCF


Differences between Autocrine and Paracrine Signaling

Autocrine Signaling involves a cell secreting a Hormone or chemical messenger (called the autocrine agent) that Binds to Autocrine Receptors on that same cell, leading to changes in the cell itself.[13] This can be contrasted with paracrine Signaling, intracrine Signaling, or classical endocrine Signaling.

Intracrine = [NH]20. 5

In Intracrine Signaling, the signaling chemicals are Produced inside the cell and bind to Cytosolic or nuclear Receptors without being secreted from the cell. The intracrine signals not being secreted outside of the cell is what sets apart intracrine signaling from the other cell signaling mechanisms such as autocrine signaling. In both autocrine and intracrine signaling, the signal has an effect on the cell that produced it.[14]

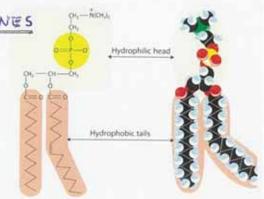
G protein-Coupled Receptors [Head - Tail]

Tyrosine Kinases.

Phosphate =

3 · PO₄3-

= C9H11NO3 Tyrosine


Tyrosine kinase inhibitor | C31 H31 F N6 O5 |

Phosphotyrosine = C9 H12 N O6 P

Deoxyadenosine Triphosphote = dATP = [Cio H12 N5 012 P4]

Phospholipids [Bilayr] CELL MEMBRANES

A **Phospholipid** is a lipid that contains a Phosphate group and is a major component of cell membranes. A phospholipid consists of a hydrophilic (waterloving) head and hydrophobic (water-fearing) tail (see figure below). The phospholipid is essentially a triglyceride in which a fatty acid has been replaced by a phosphate group of some sort.

glycerophospholigie

CH3(CH2)17+ COOI

Figure 14.3.114.3.1: A phospholipid consists of a Head and a Tail.

The "Head" of the molecule contains the Phosphate group and is Hydrophilic, meaning that it will dissolve in water. The "Tail" of the molecule is made up of two fatty acids, which are Hydrophobic and do not dissolve in water. Cell - Lipids, Phospholipids, Membranes | Britannica

Plous mod Membrane lipids - Protein [Glycerophospholipid]

1).. The formula for glycerol is C3 H8 O3. It has 3 carbon (C) atoms, 8 hydrogen (H) atoms, and 3 oxygen (O) atoms. In this image, you can see the appearance of glycerol and its chemical formula and structure. The chemical structure of glycerol shows that each carbon atom is bonded to an -OH group.

Fatty acid Wikipedia

2)...Unsaturated fatty acids ; Erucic acid , CH3(CH2)7CH

= CH(CH2)11COOH, cis-Δ · 22:1,

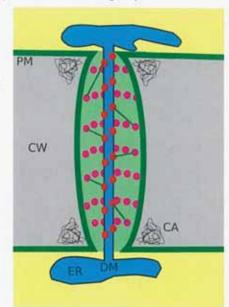
Glycerophospholipid= OC(CH2)17 + OC(CH2)17

Its general formula is CnH2nO2, where there are twice as many hydrogen atoms as there are carbon atoms, and there are always two oxygen atoms. Many food sources have saturated fatty acids present in them, particularly, meat, dairy and poultry.

Structure and organization of Phospholipids When Phospholipids are exposed to water, they self-

pointing toward the center of the sheet. This arrangement results in two 'leaflets' that are each a single molecular layer. The center of this Bilayer contains almost no water and excludes molecules like Sugars or Salts that dissolve in water. The assembly process and maintenance are driven by aggregation of hydrophobic molecules (also called the Hydrophobic effect). This complex Process includes non-covalent interactions such as van der Waals forces, electrostatic and hydrogen bonds.^[4]

Cross-section analysis-HEAD >> HYDRATED LIPID-ACID = N (PO4) H O2 O2


TALE >> DEHYDRATED-LIPID-ACID = N (PO4) H O2 O2

THE HEAD-TAIL COMMUNICATION IN CELL-MEMBRANE

Plasmodesmata (singular: Plasmodesma) are microscopic channels which traverse the cell walls of plant cells^[2] and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages,^[3] and species that have these structures include members of

the Charophyceae, Charales, Coleochaetales and Phaeophyceae (which are all algae),

as well as all embryophytes, better known as land plants.4 Unlike animal cells, almost every plant cell is surrounded by a polysaccharide cell wall. Neighbouring plant cells are therefore separated by a pair of cell walls and the intervening middle lamella, forming an extracellular domain known as the apoplast. Although cell walls are permeable to small soluble proteins and other solutes, plasmodesmata enable direct, regulated, symplastic transport of substances between cells. There are two forms of plasmodesmata: primary plasmodesmata, which are formed during cell division, and secondary plasmodesmata, which can form between mature cells. Similar structures, called gap junctions and membrane nanotubes, interconnect animal cells and stromules form between plastids in plant cells.[8] The structure of a primary plasmodesma. CW=cell wall, CA=callose, PM=plasma membrane, ER=endoplasmic reticulum, DM=desmotubule, Red circles=actin, Purple circles and spokes=other unidentified

CH₂-CH-CH₂

Glycerol

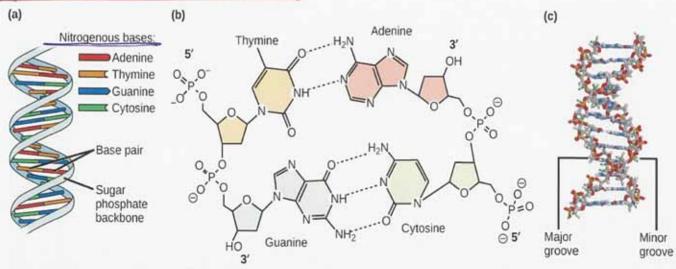
Glycerol

Saturated tany acid

Phosphate = PO4 Glycerol = [CH2]2 CH O2 C2 cholesterol = HO+H4 =

HO H H

Saturated Fatty-Acid = CH3[CH2] COOH
UnSaturated Fatty-Acid = CH3[CH2] n=17 COOH


TRAPPING AN WAY FOR DECEPTIONING The Dangerous CELLS

TATP Explosive = Cq H18 Of = (C3H6O2) 3 - The transported Substage Nifragen - Dioxide Sensor = NO2 - An Electrochemical Bensor.

Cells mediator (CO2H) n=6 - An Membrance mediator.

Signabling Protein = NH3 COO - A snare Signal on Membrance Intracting Ligand = (NH4)20 - An Inner Signal in Playma 6 Self Assembre Phaspholid = [NPO4HO2O2] - An Head-Tail Fignal Bilaye 7 Membrance Lipid-Protein = OC(CH2)+100 (CH2)+ Building Blocks of C-Membrance 8 Flavoring and Polaragents = COH+(COH)+ CH2OH+ Blues and Polar flavoring and Polaragents = COH+(COH)+ CH2OH+ Glues and Polar flavoring and Polaragents = COH+(CH2)+ CHO2C2+ (H-+Ha)+ [CH3(CH2)+1 COOH]+ The Cell-Membrance Regulates the maximum of Substances 1-10 [CH3(CH2)+1 COOH] 6

The DNA Double Helix

Nucleotide Structure Review

Recall some basic structural features of the nucleotide building blocks of DNA including: the nucleotides start as off as nucleotide triphosphates. Nucleotide are composed of a nitrogenous base, deoxyribose C₅H₁₀O₄ (5carbon sugar), and a phosphate group 4.[P O4]. The nucleotide is named according to its nitrogenous base, purines such as adenine (A) and quanine (G), or pyrimidines such as cytosine (C) and thymine (T). Recall the structures below. Note that the nucleotide Adenosine triphosphate (ATP)= Adenosine Triphosphate | C10 H16 N5 O13 P3 | CID 5957 Is a precursor of the deoxyribonucleotide (dATP) = Deoxyadenosine triphosphate | C10 H16 N5 O12 P3 &2 H12 which is incorporated into DNA. Ribose is a simple sugar and carbohydrate with molecular formula C₅H₁₀O₅ and the linear-form composition H-(C=O)-(CHOH)4-H. The naturally occurring form, d-ribose, is a component of the ribonucleotides from which RNA is built, and so this compound is necessary for coding, decoding, regulation and expression of genes. By contrast, it is very high melting (with decomposition), insoluble in organic solvents, and a million times weaker as an acid than ordinary carboxylic acids. It is a key Nucleotide used in DNA Syntheris and Replication Deoxyadenosine-Tritosphote = CIOHIZ NSO12P4 in 2-5 Times more is toxic Effect, and can Significally Impact. The activity of Ribonucles reductore (RNR), and imborlancing the (Deoxyn) pools dATP = [C10 H12NSO12 P4] and For 5 dATP = Inbalances DNA [10]

J Bioenerg Biomembr

. 2020 Jul 26;52(5):321-342. doi: 10.1007/s10863-020-09846-4

Lipid composition of the cancer cell membrane

Phosphatidic acid (PA)

= P(H0)2 + 02 + 02

Phosphatidylglycerol (PG) (PA)= OH OH + PHO(0)3 + O2 + O2Phosphatidylglycerol structure consists of phosphatidic acid bound to glycerol substituent (Yeagle 2016). The lipid is an anionic intermediate of the cardiolipin biosynthesis pathway (Yeagle 2016). Although phosphatidylglycerol comprises only about 1 mol% of the membrane phospholipids, it remains an important

component of the cytosolic side of the plasma membrane due to its ionic properties (Zech et al., 2009). Oleic and palmitic acid moieties are the most common glycerol substituents for phosphatidylglycerol (Zech et al., 2009).

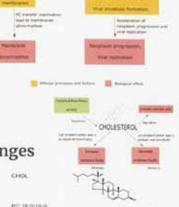
Certain studies have demonstrated that phosphatidylglycerol accounts for protein kinase C (PKC) activation and that it is involved in viral transcription (Bailey et al., 2017; Hirai et al., 1992; Murray and Fields, 1998). Moreover, phosphatidylglycerol participates in viral envelope formation (Sands and Lowlicht, 1976). At the tissue level, phosphatidylglycerol can inhibit phosphatidylcholine transfer between membranes, which results in membrane structure and function irregularities (Wirtz et al., 1976). The importance of this compound during viral infections may suggest that its abnormal levels could be observed in virus-associated cancers such as cervical cancer (Preetha et al., 2005). These fluctuations may lead to an increase in viral replication effectiveness and cell neoplasia (Fig. 3).

Membrane Cholesterol

Healthy = C23 H46 O H

Cancerous = 10.[C23 H46 O H]

The role of lipid species in membranes and Cancer-related changes Illustrations of some lipid structures. Cholesterol is shown on the top followed by PC16:0/16:0, an example of a phospholipid with two saturated fatty acyl chains, which although much used in model membranes is not very common in biological samples. PS 18:0/18:1 is an example of a phospholipid with one saturated and one unsaturated fatty acyl chain, which is a very common combination, and this PS species is the most common PS species in many cells. Note that the unsaturated fatty acyl chains most often are found in the sn-2 position and that all double bonds in phospholipids are in a cis-configuration


CHOL= HHHHH OH ,PC16= NO202+PO4+N,PS18=HO202+PHO(0)3+NNH20OH,

PE18= HO3+PHO(0)3 + NH2 , SM= H(HCN)NHO +PO4+N ,

Smoking increases the risk of high cholesterol and is associated with changes in cholesterol levels, specifically affecting the "good" HDL cholesterol and the "bad" LDL cholesterol. The chemical formula for cholesterol remains unchanged: C27H46O.

CANNABINOID BREAST CANCER = [C402HIS]

PG

THE Cannabinoid CANCERED BREAST [CBD] = C4 O2 H15

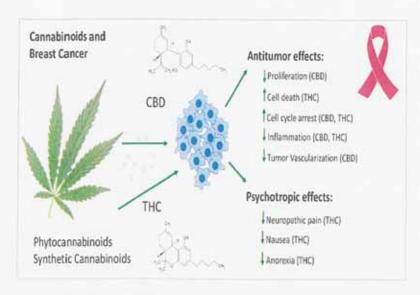
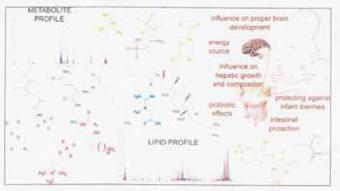
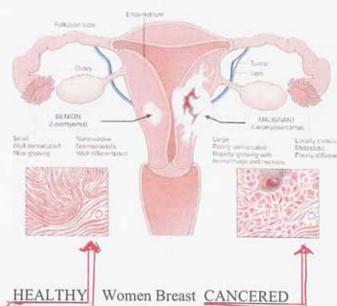




Fig. 2.1. Comparison between a benign tumor and a malignant tumor of the same origin.

(From Kumar, V., et al: Robbins and Cotran Pathologic Basis of Disease, 9th Edition, Philadelphia, 2015, Saunders.)

THE HEALTHY WOMEN BREAST

[A] = THE HEALTHY BREAST LIPID -1 = [C6 O2 H20] + [N3 O2 C H6]

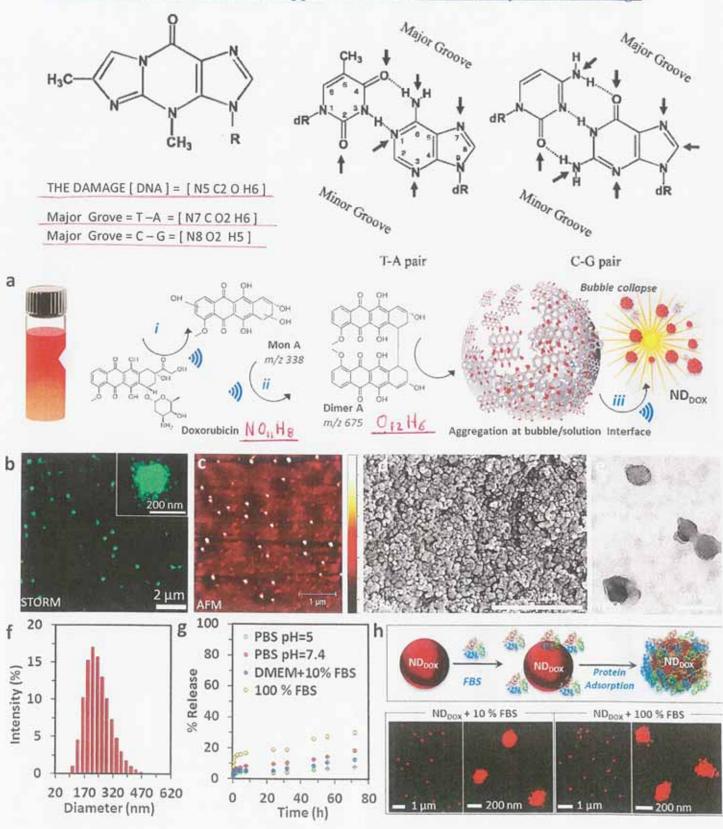
[B] = THE HEALTHY BREAST LIPID -2 = [C4 O6 N2 P H14] + [N2 O3 H5] + [N O4 H5] + {{N O8 P H3 }}}

[C] = THE CANNABINOID BREAST - CANCER [CBD] = [C4 O2 H15]

THE CANCER [C] Attacts THE HEALTHY BREAST as,

[C] >>>> Attacts [A] or [B] === Becomes [C] = Cancered . >>>>

THE PROGRAM >>> DETECTS ANTIDOTES 1 = ANTIDOTE -1, 2 = ANTIDOTE -2, ,,,, and


1 = ANTIDOTE -1 >>>> Attacts The Cancered [C] and CHECKS THEIR-ENERGY-LEVELS

The ANTIDOTES SYNTHESIS IS PLUGED WITH THE DETECTED

PROBER-MODES FOR REASONING WITH THE VARIUS

BREAST-CANCER Frequencies and Convert them to HEALTHY.

What causes human cancer? Approaches from the chemistry of DNA damage

Therapies for Human Epidermal Receptor 2 Positive Breast Cancer

Figure 6. Chemical structure of lapatinib, with the chemical formula $C_{29}H_{26}CIFN_4O_4S$ and a molecular weight of 581.0575 g/mol.

[1] = Labatinib= C29 H26 C1 F N4 O4 S

Figure 7. Chemical structure of afatinib, with the chemical formula C₂₄H₂₅CIFN₅O₃S and a molecular weight of 485.9384 g/mol.

[2] = Afatinib= C24 H25 C1 F N5 O3 S

Figure8. Chemical structure neratinib, with the chemical formula C₃₀H₂₉CIFN₆O₃S and a molecular weight of 557.0427 g/mol.

[3] = Neratinib = C30 H29 C1 F N6 O3 S

Chemistry of Human Breast Milk— The Healthy Women – Breast.

METABOLITE
PROPILE

Afteror on proper true
development

and every
house on
house provide
and companion
probletic files
what durings
whether
provides

- 1... S N O3 H3 2... N O9 H9 P C2
- 3... N O4 H3 4... N2 O3 H5
- 5... C3 O5 H24 6... N3 C O2 H7
- 7... N P O8 H3 8...N2 P C2 O8 H14
- 9... P N5 O7 H4 10.. N C O2 H5

Energy Comparison Results : From Program

The Needed >>> WR = 39, 91025.[10]^15 Hz >>> ER = 26, 26896. eV

[1]= Results >>> WR1 = 28, 69375.[10]^15 Hz >>> ER1 = 18, 88625. eV

[2]= Results >>> WR2 = 21, 08512.[10]^15 Hz >>> ER2 = 13, 87825. eV

[3]= Results >>> WR3 = 22, 73458.[10]^15 Hz >>> ER3 = 14, 96392. eV

The Chemical Structures Efficiency is Under the Resonance of Energy-Level frequencies.

It is needed to be Plugued with the Prober-Modes of the Breast-Cancer Resonance frequencies.

Compound		0 - 1
Description	THE - TATP EXPLOSIVE = [C9 H18 O6]	Chemical Composition
Formula	C ₉ H ₁₈ O ₆	
Total Number of Elements	33	
Stiffness Factor	36	

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	9	С	12	108	36	36		
2	6	0	16	96	12	12		n
3	18	Н	1	18	18	18		

Bond - Mode

THE TATP-EXPLOSIVE = A S'abotager

Matrices

Mass Matrix

Stiffness Matrix

The MODE of RESONANCE IS THE ATHWART ENERGY-BONDING

Flexibility Matrix

Common Mass M = m × 13.2923077 kg

Natural - Frequencies

$$W_{1=C}$$
 = 1.355541 x 10¹⁵ Hz
 $W_{2=O}$ = 0.782622 x 10¹⁵ Hz
 $W_{3=H}$ = 0.958512 x 10¹⁵ Hz

G - Vector

$$G_1 = 0.462426$$

 G_2 = 1.48514531 G_3 = 1.0537868

Mode - Shapes

Φ1 =	0.462426	x	1 3.21164 2.27882	
Φ2 =	1.48514531	x	0.31137 1 0.70955	
Ф3 =	1.0537868	x	0.43882 1.40934 1	

Modes Dynamic - Results

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

E dF1

h x fw₁

W₁ = 7.267613 x 10¹⁵ Hz U1 = 1.248178 x 10° m/s $\lambda_1 = 1.079107 \times 10^{-10} \text{ m}$ W₂ = 2.341358 x 10¹⁵ Hz U2 = 0.751434 x 10° m/s $\lambda_2 = 2.016521 \times 10^{-10} \text{ m}$ W₃ = 3.404251 x 10¹⁵ Hz U₃ = 2.092507 x 10° m/s $\lambda_3 = 3.862116 \times 10^{-10} \text{ m}$ Circular - Frequency WR 6.506611 x 1015 Hz Resonance - Energy ER 4.28265648663135 eV Resultant - Velocity 3.366431 x 105 m/s UR Resultant - A λ_R = 3.250834 x 10⁻¹⁰ m Re Helical - r = AR = rR 0.5173862553 x 10^{-1°} m Bands UL - Amplitude ARB = 0.258693 x 10^{-1°} m Resultant - Potential VRP 4.28263885175214 Volt SideBand - Potential V_{SB} = 4.71092213529449 Volt Intensity - Current l_C 0.1704688782 x 10-12 Ampere Vaporation -Temperature Τv = 645.744 Kelvin

 Intensity - Current
 =
 I_C
 =
 0.1704688782 x 10⁻¹² Amp

 Vaporation - Temperature
 =
 T v
 =
 645.744 Kelvin

 Magnetic - Field
 =
 MF
 =
 2.422187 x 10⁻⁶ Tesla

 Carrier - Power
 =
 P_{CR}
 =
 0.26768853 x 10⁻²⁰ Watt

 T.Modulated - Power
 =
 P_{TRM}
 =
 0.40153280 x 10⁻²⁰ Watt

 SideBands - Power
 =
 P_{SBM}
 =
 0.13384426 x 10⁻²⁰ Watt

THE TATP ENERGY-SPECTPUM. Waveform Signals

 $A_1 = 0.171745 \times 10^{-10} \text{ m}$

 $A_2 = 0.320939 \times 10^{-19} \text{ m}$

 $A_3 = 0.614675 \times 10^{-10} \text{ m}$

 $\sigma_1 = u_1/\phi = 0.771416 \times 10^5 \text{ N/mm}^2$ $\Delta w_1 = W_R - W_1 = -0.761002 \times 10^{15} \text{ Hz}$

 $\Delta W_1 = W_R - W_1 = -0.761002 \times 10^{15} Hz$ $\Sigma W_1 = W_R + W_1 = 13.774223 \times 10^{15} Hz$ $fW_1 = \Delta W_1/2\pi = -0.121117 \times 10^{15} Hz$

= -0.50089223 eV

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

Con	npou	nd															
Descr	ription			DECER O6]+M							SIVE>	= [C	9 H18	_			
Form	ula			C ₉ C ₂ C	N ₂ NN	H18H	l ₃ H ₂ H:	060	O2O(00	= T	HE	CA	RR	VE	R W.	AVE
Total	Numbe	r of	Elements	56						,	10	+[2	7+53	31+	147	+157	AVE
Stiffn	ess Fac	tor		72													
Prop	erties									1-	TA	TP	. PC) 5 1	110	NIN	CAR
#	Numb		Symbol	Mass	To	otal N	lass	F	Pins	T	Sock	ets		Bond	led	Un	bonded
1	9		С	12			108		36	6		36					
2	6		0	16			96		1:	2		12			/	-	
3	4		0	16			64		1	В		8			//		
4	2		0	16			32			4		4		1	1	*	
5	2		N	14			28		(6		6				M	
3	2		С	12			24		1	В		8			7	1	
7	18		Н	1			18		18	8		18				*	
3	1		0	16			16			2		2				M	
9	1		0	16			16		:	2		2			1	-9-	
10	1		0	16			16		- 1	2		2			1		
11	1		N	14			14			3		3			IA		
12	1		N	14			14			3		3			M	1	
13	1		С	12			12		4	4		4			A	UD	
14	3		Н	1			3			3		3				-	
15	2		Н	1			2		- 2	2		2		X	1		
16	2		Н	1			2		- 2	2 _		2		-	1		
2000	Ma	4.								T	AT	P =	- (à H	1806)	
	- Mod											_		-			
36		12	8	4	6		8		18	2		2	2		3	3	4
C 36	0	12	0	0	N ₆		C ₈	Н	18	0 2	0	2	0 2	ľ	3	N ₃	C ₄
								ř	-	-n	-	0	-1	5-		- 4	7.7
/latric	es							1	LA	IP	EX.	pco	Sive	LD	out	le Si	de boine
lass	Matrix								Spe	cti	cum	01	FF	Co	issi	er V	lave
									AT	hus	00.	FF	NOT.	au	Vib	totto	n Spec
n x	1000							7		1100	Let Le	A. A. Ben.	1100	12	· v v p	MILIO	nupec
	108	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0		
	0	96	0 (0 0	0	0	0	0	0	0	0	0	0	0	0		
	0	0	64 (0 0	0	0	0	0	0	0	0	0	0	0	0		
	0	0	0 3	2 0	0	0	0	0	0	0	0	0	0	0	0		
	0	0	0 (28	0	0	0	0	0	0	0	0	0	0	0		
	0	0	0 (0 0	24	0	0	0	0	0	0	0	0	0	0		
	0	0	0 (0 0	0	18	0	0	0	0	0	0	0	0	0		
	0	0	0 (0	0	0	16	0	0	0	0	0	0	0	0		
		125	2527 176		0	0	0	16	0	0	0	0	0	0	0		
	0	0	0 (0	U	U.	0	10			0	0			0		
	0	0	0 (0	0	0	0	16	0	0	0	0	0	0		

$\lambda_{11} = -0.1212946 \text{ nm}$	$W_{11} = 4.096392 \times 10^{15} Hz$	$f_{11} = 0.651961 \times 10^{15} \text{ Hz}$	E ₁₁ = 2.69624879 eV
$\lambda_{12} = -0.14443013 \text{ nm}$	$W_{12} = 3.753992 \times 10^{15} \text{ Hz}$	$f_{12} = 0.597466 \times 10^{15} \text{ Hz}$	E ₁₂ = 2.47088078 eV
$\lambda_{13} = -0.12413526 \text{ nm}$	$W_{13} = 4.675672 \times 10^{15} \text{ Hz}$	$f_{13} = 0.744156 \times 10^{15} \text{ Hz}$	E ₁₃ = 3.07753139 eV
$\lambda_{14} = 4.81640548 \text{ nm}$	$W_{14} = 0.650071 \times 10^{15} \text{ Hz}$	$f_{14} = 0.103462 \times 10^{15} \text{ Hz}$	E ₁₄ = 0.42787723 eV
$\lambda_{1.5} = 2.94389152 \text{ nm}$	$W_{15} = 0.678916 \times 10^{15} \text{ Hz}$	$f_{15} = 0.108053 \times 10^{15} \text{ Hz}$	E ₁₅ = 0.44686277 eV
$\lambda_{16} = -3.11888756 \text{ nm}$	$W_{16} = 0.659594 \times 10^{15} Hz$	f ₁₆ = 0.104978 x 10 ¹⁵ Hz	F ₁₆ = 0.43414541 eV

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

$W_4 = 32.611439 \times 10^{15} Hz$	$U_1 = 2.644025 \times 10^6 \text{ m/s}$	$\lambda_1 = 0.509419 \times 10^{-10} \text{ m}$	A ₁ = 0.081077 x 10 ⁻¹⁰ m
W ₂ = 9.750725 x 10 ¹⁰ Hz	U ₂ = 1.53347 x 10 ^s m/s	$\lambda_2 = 0.98814 \times 10^{-10} \text{ m}$	A ₂ = 0.157267 x 10 ⁻¹⁰ m
W ₃ = 8.427942 x 10 ¹⁵ Hz	$U_3 = 1.746077 \times 10^6 \text{ m/s}$	λ ₃ = 1.301732 x 10 ⁻¹⁰ m	A _a = 0.207177 x 10 ⁻¹⁰ m
W ₄ = 4.497058 x 10 ¹⁵ Hz	U ₄ = 1.803772 x 10° m/s	λ ₄ = 2.520189 x 10 ^{-1°} m	A ₄ = 0.401101 x 10 ⁻¹⁰ m
Ws = 5.308947 x 10 ¹⁵ Hz	Us = 2.095162 x 10 ^s m/s	λ ₅ = 2.479643 x 10 ⁻¹⁰ m	As = 0.394647 x 10 ⁻¹⁰ m
W ₆ = 4.586777 x 10 ¹⁵ Hz	U ₆ = 2.103491 x 10° m/s	$\lambda_6 = 2.881462 \times 10^{-10} \text{ m}$	A ₆ = 0.458599 x 10 ⁻¹⁹ m
W ₇ = 1.517497 x 10 ¹⁸ Hz	U ₇ = 1.397076 x 10° m/s	$\lambda_7 = 5.784585 \times 10^{-10} \text{ m}$	A ₇ = 0.920645 x 10 ⁻¹⁰ m
$W_8 = 3.602629 \times 10^{15} Hz$	Ue = 2.283191 x 10° m/s	λ ₈ = 3.982012 x 10 ⁻¹ ° m	A ₈ = 0.633757 x 10 ⁻¹⁰ m
W ₉ = 3.602629 x 10 ¹⁵ Hz	U ₉ = 2.283191 x 10 ⁶ m/s	$\lambda_9 = 3.982012 \times 10^{-10} \text{ m}$	A _e = 0.633757 x 10 ⁻¹ ° m
$W_{10} = 3.1799 \times 10^{15} Hz$	U ₁₀ = 2.145059 x 10 ^s m/s	$\lambda_{10} = 4.238436 \times 10^{-10} \text{ m}$	A ₁₀ = 0.674568 x 10 ⁻¹⁰ m
$W_{11} = 4.096392 \times 10^{16} Hz$	U ₁₁ = 2.602731 x 10 ⁶ m/s	$\lambda_{11} = 3.992157 \times 10^{-10} \text{ m}$	A ₁₁ = 0.635371 x 10 ⁻¹⁰ m
$W_{12} = 3.753992 \times 10^{15} Hz$	U ₁₂ = 2.491582 x 10° m/s	$\lambda_{12} = 4.170246 \times 10^{-10} \text{ m}$	A ₁₂ = 0.663715 x 10 ⁻¹⁰ m
$W_{13} = 4.675672 \times 10^{15} Hz$	U ₁₃ = 3.003474 x 10 ⁵ m/s	$\lambda_{13} = 4.036079 \times 10^{-18} \text{ m}$	$A_{13} = 0.642362 \times 10^{-10} \text{ m}$
$W_{14} = 0.650071 \times 10^{15} Hz$	U ₁₄ = 2.239815 x 10 ⁵ m/s	$\lambda_{14} = 21.648676 \times 10^{-10} \text{ m}$	A ₁₄ = 3.445494 x 10 ⁻¹⁰ m
W ₁₅ = 0.678916 x 10 ¹⁵ Hz	$U_{15} = 2.803402 \times 10^{5} \text{ m/s}$	$\lambda_{15} = 25.94475 \times 10^{-10} \text{ m}$	A ₁₅ = 4.129235 x 10 ⁻¹⁰ m
W ₁₆ = 0.659594 x 10 ¹⁵ Hz	U ₁₆ = 2.763223 x 10° m/s	$\lambda_{16} = 26.322005 \times 10^{-10} \text{ m}$	A ₁₆ = 4.189277 x 10 ⁻¹⁰ m
Circular Erosuanau	- 10/		

W ₁₆ = 0.659594 x 10 ⁻⁴ Hz	$J_{16} = 2.763$	3223 x 10°	m/s	$\lambda_{16} = 26.322005 \times 10^{-10} \text{ m}$ A ₁
Circular - Frequency	=	W_R	=	45.80009 x 1015 Hz
Resonance - Energy	=	ER	=	30.14565673029671 eV
Resultant - Velocity	=	UR	=	45.43119 x 10 ⁵ m/s
Resultant - λ	=	λ_R	=	6.232577 x 10 ⁻¹⁰ m
Re Helical - r = AR	=	rR	=	0.9919454373 x 10 ^{-1°} m
Bands UL - Amplitude	=	ARB	=	0.495973 x 10 ⁻¹⁰ m
Resultant - Potential	=	VRP	=	30.1455325982266 Volt
SideBand - Potential	=	V _{SB}	=	33.1602224033264 Volt
Intensity - Current	=	Ic	=	0.0890183189 x 10 ⁻¹² Ampere
Vaporation -Temperature	=	Tv	=	1,004.451 Kelvin
Magnetic - Field	=	MF	=	0.725072 x 10 ⁻⁶ Tesla
Carrier - Power	=	PCR	=	0.98395575 x 10 ⁻²⁰ Watt
T.Modulated - Power	=	PTRM	=	1.47593362 x 10 ⁻² Watt
SideBands - Power	=	P _{SBM}	=	0.49197787 x 10 ⁻²⁰ Watt

THE ENERGY SPECTRU OF CARRIER-WAYE IN WAYE-FORM SIGNALS

σ ₁	=	υ1/ φ
Δ_{W_1}	=	W R - W1
Σ_{W_1}	=	W R + W1
fw ₁	=	$\Delta W_1/2\pi$
E dF ₁	=	h x fw ₁

= 1.634098 x 10⁵ N/mm² = 13.18865 x 10¹⁵ Hz = 78.411529 x 10¹⁵ Hz = 2.099039 x 10¹⁵ Hz = 8.68078055 eV

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

Compound	
Description	SELF Assemble=2.[N PO4 HO2O2]+Membrane Li- Protein=OC(CH2)34OC+Mem-Plasma=PO4 (CH2)2CHO2C2HOH4CH3(CH2)34+2(COOH)
Formula	N2P2PC34C34C2C2C2C2C2C08O4O4O4O4O2O2OH68H68H6 H4H4H2H2HH = THE HEALTHY MODULATING WAYE
Total Number of Elements	269 [1]+[]+[]+[]+[]+[6]+[7]+[8]+[9]+[10]
Stiffness Factor	816

TATP DOSITION IN THE MODULATING-WAVE

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	34	С	12	408	136	136		TATP=
2	34	С	12	408	136	136		C9 HIG
3	8	0	16	128	16	16		Desimo
4	68	Н	1	68	68	68	1	2
5	68	Н	1	68	68	68	1118	
6	4	0	16	64	8	8	10	H
7	4	0	16	64	8	8	A	
8	4	0	16	64	8	8		
9	4	0	16	64	8	8	NA	
10	2	Р	31	62	6	6	V	
11	2	0	16	32	4	4	(
12	2	0	16	32	4	4	1	
13	1	Р	31	31	3	3		
14	2	N	14	28	6	6	W X	7
15	2	С	12	24	8	8	N.	
16	2	С	12	24	8	8	1 XX	
17	2	С	12	24	8	8	M	2014
18	2	С	12	24	8	8	M	
19	2	С	12	24	8	8	V	
20	1	0	16	16	2	2		
21	1	С	12	12	4	4	(
22	6	Н	1	6	6	6		0
23	4	Н	1	4	4	4		-
24	4	Н	1	4	4	4		
25	2	Н	1	2	2	2	-	
26	2	Н	1.	2	2	2	/	
27	1	Н	1	1	1	1		
28	1	Н	1	1	1	1	V	

Bond - Mode

C C O H H O O O O P O O P

136 136 16 68 68 8 8 8 8 8 8 6 4 4 4 3

THE TATP Explosive [Double Sided BAND SPECTRUM]

OF FU MODULATING WAVE IN PROGRAMS

Athwart Energy Vibration Spectrum

Circular - Frequency W_R 144.756298 x 1015 Hz Resonance - Energy ER 95.278714767022 eV Resultant - Velocity = UR 119.65475 x 10⁵ m/s Resultant - A λR 5.193646 x 10^{-1°} m Re Helical - r = AR = rR 0.8265944312 x 10^{-1°} m Bands UL - Amplitude = = ARB 0.413297 x 10⁻¹° m Resultant - Potential VRP = 95.2783224337514 Volt SideBand - Potential = V_{SB} 104.806586243724 Volt Intensity - Current lc 0.0195576932 x 10⁻¹² Ampere Vaporation -Temperature Tv 1.557.836 Kelvin

MF

PCR

PTRM

P_{SBM}

=

=

0.183602 x 10⁻⁶ Tesla

0.68325835 x 10-2° Watt

1.02488753 x 10-2° Watt

0.34162917 x 10-20 Watt

THE ENERGY SPECTRUM
OF THE HEATHY
MODULATING WAVE

 $= U_1/\phi$ 1.091807 x 105 N/mm2 O1 A w₁ 89.758898 x 1015 Hz W R - W1 Σ w₁ 199.753699 x 1015 Hz W R + W1 $= \Delta W_1/2\pi$ 14.285572 x 10¹⁵ Hz fw₁ E dF1 h x fw₁ 59.07938041 eV k, = $\Delta W_1 / \Sigma W_1$ 0.449347863 β , W R / W1 2.632057093 = 1/W₁ 0.018183 x 10⁻¹⁵ Rad

=

=

=

=

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

φ , 0.5 * A12 Р, 0.0005 x 10-2° Watt = U2/ Ø σ_2 1.06894 x 105 N/mm2 Δ_{W_2} W R - W2 92.038482 x 10¹⁵ Hz Σ W2 W R + W2 197.474114 x 1015 Hz = ΔW₂/ 2π 14.648379 x 1015 Hz fw₂ = E dF2 = 60.57980478 eV h x fw₂ = $\Delta W_2 / \Sigma W_2$ k 2 0.466078718 β 2 = WR/W2 2.745870542 = φ 2 = 1/W₂ 0.018969 x 10-15 Rad

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

= U₂/ φ 0.798172 x 105 N/mm2 Оз 135.534977 x 1015 Hz Δ W₃ W R - W3 = Σ w₃ = 153.977619 x 10¹⁵ Hz W R + W3 $= \Delta W_3/2\pi$ 21.571062 x 1015 Hz fw₃ E dFa h x fw₃ 89.20923366 eV k a = $\Delta W_3 / \Sigma W_3$ 0.880225177 β, = W_R/W₃ 15.698000050 Фэ = 1/W₃ 0.108444 x 10-15 Rad

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

 $\sigma_4 = U_4/\phi$ $\Delta W_4 = W_R - W_4$

 $= 0.5 * As^2$

W R + W4

0,5 * A₂2

P 2

Ρ,

 Σ_{W_4}

Magnetic - Field

Carrier - Power

T.Modulated - Power

SideBands - Power

= 0.769432 x 10⁵ N/mm² = 140.203904 x 10¹⁵ Hz = 149.308693 x 10¹⁵ Hz

0.0098 x 10-2° Watt

0.0005 x 10-2° Watt

min.Amplitude Modulation max.Amplitude Modulation

Compound

Description	THE - SELF ASSEMPLE BILAYE O2 O2]	ER-SIGNAL = [N P O4 H
Formula	NPHO ₄ O ₂ O ₂	The Bilayer Mechanisa
Total Number of Elements	11	Signal System.
Stiffness Factor	24	419110093111

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	4	0	16	64	8	8		
2	2	0	16	32	4	4		•
3	2	0	16	32	4	4		M
4	1	Р	31	31	3	3		5/1
5	1	N	14	14	3	3		
6	1	Н	1	1	1	1		

Bond - Mode

8	4	4	3	3	1	= :	23
0 8	0	0	Р	N	Н	Т	
8	4	4		3	1		23

Matrices

Mass Matrix

Flexibility Matrix

THE PROGRAM'S ATHWART ENERGY BONDING, IS THE 1-MODEOF RESONANS

From Athwart Energy Vibration Spectru

			0.50437	1
			2.11065	
Φ4 =	-0.08750393	x	1.80514	
Ψ4 -	-0.00730393		1	
			1.54038	
			-57.66218	
		ĺ	0.32744	1
			1.37022	1
	0.40470000		1.17188	
Φ ₅ =	-0.13478893	×	0.64919	
			1	
			-37.43384	
		1	-0.00875	1
			-0.0366	1
Φ -	E 04500770		-0.03131	
Φ ₆ =	5.04566772	x	-0.01734	
			-0.02671	
			1	

Modes Dynamic - Results

$\lambda_1 = -0.04413467 \text{ nm}$	$W_1 = 11.089621 \times 10^{15} Hz$	f ₁ = 1.764968 x 10 ¹⁵ Hz	E ₁ = 7.29919791 eV
$\lambda_2 = -0.18468989 \text{ nm}$	$W_2 = 3.833276 \times 10^{15} Hz$	f ₂ = 0.610085 x 10 ¹⁵ Hz	E ₂ = 2.52306536 eV
$\lambda_3 = -0.15795702 \text{ nm}$	$W_3 = 4.144977 \times 10^{15} Hz$	f ₃ = 0.659694 x 10 ¹⁵ Hz	E ₃ = 2.72822759 eV
$\lambda_4 = -0.08750393 \text{ nm}$	W ₄ = 4.822903 x 10 ¹⁵ Hz	f ₄ = 0.767589 x 10 ¹⁵ Hz	E ₄ = 3.17443846 eV
$\lambda_5 = -0.13478893 \text{ nm}$	$W_5 = 3.885932 \times 10^{15} Hz$	f ₅ = 0.618465 x 10 ¹⁵ Hz	E ₅ = 2.55772345 eV
$\lambda_6 = 5.04566772 \text{ nm}$	$W_6 = 0.366693 \times 10^{15} Hz$	$f_6 = 0.058361 \times 10^{15} Hz$	E ₆ = 0.24135747 eV

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

SideBand - Potential

THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN					
W ₁ = 11.089621 x 10 ¹⁸ Hz	U1 = 2.002	2907 x 10°	m/s	$\lambda_1 = 1.134812 \times 10^{-10} \text{ m}$	
W ₂ = 3.833276 x 10 ¹⁵ Hz	U ₂ = 1.665	5339 x 10°	m/s	$\lambda_2 = 2.729684 \times 10^{-10} \text{ m}$	
W _a = 4.144977 x 10 ⁴⁵ Hz	Ua = 1.73	1724 x 10°	m/s	$\lambda_3 = 2.625042 \times 10^{-10} \text{ m}$	
W ₄ = 4.822903 x 10 ¹⁵ Hz	U4 = 1.897	7867 x 10°	m/s	$\lambda_4 = 2.472505 \times 10^{-10} \text{ m}$	
Ws = 3.885932 x 1015 Hz	Us = 2.534	4989 x 10°	m/s	$\lambda_s = 4.098838 \times 10^{-10} \text{ m}$	
W ₆ = 0.366693 x 10 ¹⁵ Hz	U ₆ = 2.913	3692 x 10°	m/s	$\lambda_6 = 49.925359 \times 10^{-10} \text{ m}$	
Circular - Frequency	=	W_R	=	14.071701 x 10 ¹⁵ Hz	
Resonance - Energy	=	ER	=	9.262005126657598 eV	
Resultant - Velocity	=	UR	=	19.621849 x 10 ⁵ m/s	
Resultant - λ	=	λ_{R}	=	8.761394 x 10 ⁻¹⁰ m	
Re Helical - r = AR	=	rR	=	1.3944191 x 10 ⁻¹⁰ m	
Bands UL - Amplitude	=	A_{RB}	=	0.69721 x 10 ⁻¹ ° m	
Resultant - Potential	=	Vpp	=	9 26196698809987 Volt	

VSB

10.1882056393234 Volt

THE BILAYER SIGNAL ENERGY - SPECTRUM

 $A_1 = 0.180611 \times 10^{-10} \text{ m}$ $A_2 = 0.434443 \times 10^{-10} \text{ m}$ $A_3 = 0.417788 \times 10^{-10} \text{ m}$ $A_4 = 0.393511 \times 10^{-10} \text{ m}$ $A_5 = 0.65235 \times 10^{-10} \text{ m}$ $A_6 = 7.945868 \times 10^{-10} \text{ m}$

Comparison Results

The Initial Healthy [Carrier] Compound

DECEPTIONING THE CELLS <EXPLOSIVE> = [C9 H18 O6]+Mediator+Sensor+Signal+Ligand : $C_9C_2CN_2NNH_{18}H_3H_2H_2O_6O_4O_2OOO$

W RI	=	45.80009 x 10 ¹⁵ Hz	
E _{RI}	=	30.14565673029671 eV	THE INITIAL ENERGY-SPECTRUM
f _{RI}	=	7.289526 x 10 ¹⁵ Hz	C d
U RI	=	45.43119 x 10 ⁵ m/s	
λRI	=	6.232577 x 10 ^{-1°} m	
A _{RBI}	=	0.061997 x 10 ⁻¹ ° m	Helical r RI = ARI = 0.9919454373 x 10 ⁻¹⁰ m
V _{RI}	=	30.1455325982266 Volt	
V _{SBI}	=	33.1602224033264 Volt	M-Field MFI = 0.725072 x 10 ⁻⁶ Tesla
P _{RI}	=	0.98395575 x 10 ^{-2°} Watt	Tvi = 1,004.451 Kelvin
P _{RMI}	=	1.47593362 x 10 ^{-2°} Watt	Ici = 0.1335274783 x 10 ⁻¹² Ampere
P BRMI	=	0.49197787 x 10 ^{-2°} Watt	

The Final Deseased [Modulated] Compound

SELF Assemble=2.[N PO4 HO2O2]+Membrane Li-Protein=OC(CH2)34OC+Mem-Plasma=PO4 (CH2)2CHO2C2HOH4CH3(CH2)34+2

W RF	=	144.756298 x 10 ¹⁵ Hz	
E RF	=	95.278714767022 eV	THE FINAL ENERGY-SPECTRUM.
f _{RF}	=	23.03936 x 10 ¹⁵ Hz	E-SFINAL HEALTHY
U RF	=	119.65475 x 10 ⁵ m/s	- Control of the cont
λRF	=	5.193646 x 10 ⁻¹ ° m	
A RBF	=	0.029521 x 10 ⁻¹ ° m	Helical r RF = ARF = 0.8265944312 x 10 ⁻¹⁰ m
V _{RF}	=	95.2783224337514 Volt	
V _{SBF}	=	104.806586243724 Volt	M-Field MFF = 0.183602 x 10 ⁻⁶ Tesla
P _{RF}	=	0.68325835 x 10 ^{-2°} Watt	T _{VF} = 1,557.84 Kelvin
P RMF	=	1.02488753 x 10 ^{-2°} Watt	IcF = 0.0293365398 x 10 ⁻¹² Ampere
P BRMF	=	0.34162917 x 10 ^{-2°} Watt	
Complemen	ntary		THE NEEDED ENERGY-SPECTRUM
W RC	=	197.91241717 x 10 ¹⁵ Hz	THE THE DED LIVERGY - PRECIENT
E RC	=	130.265040492351 eV	E-SDEMOD
f max - UB	=	30.328886 x 10 ¹⁵ Hz	- L DEMOD
f min - UB	=	15.749834 x 10 ¹⁵ Hz	
βIF	=	0.683605548164565	
m _{IF}	=	0.552811479009532	
∆W RES	=	243.712507 x 1015 Hz	Ni = 16 NF = 28

M-Field

-1.082939 x 10-6 Tesla

The Healthy [Demodulated] Final Equilibrate

0 x 1015 Hz

143.292727680796 Volt

V SBD

=

AW BAN

 W_{RC} + W_{RI} = 243.71250679 x 10¹⁵ Hz E_{RC} + E_{RI} = 160.410697222648 eV

Compound		
Description	1 -TATP Explosive = [C9 H18 O6] + Signalling Protein =47.[N H3 C O O]	
Formula	NA7H141H18C47C9O47O47O6 -1-ANTIDOTE ENCO	TING EXPLACIVE
Total Number of Elements	362	27
Stiffness Factor	1692	TATP+L4)

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	47	0	16	752	94	94		
2	47	0	16	752	94	94		7
3	47	N	14	658	141	141	(
ļ	47	С	12	564	188	188		
5	141	Н	1	141	141	141	U	
6	9	С	12	108	36	36		TATE
	6	0	16	96	12	12	() (C9 H18
3	18	Н	1	18	18	18	4	1 18

Bond - Mode

Matrices

Mass Matrix

The TATP Explosive, As Double Sided Band Spectrum, is Encoted. - in the ANTIPOTE'S, Athwart. - Energy Vibrating Spectrum.

Stiffness Matrix

The Antidote	1 -TATP Explosive = [C9 H18 O6] + Signalling Protein =47.[N H3 C O O] : N ₄₇ H ₁₄₁ H ₁₈ C ₄₇ C ₉ O ₄₇ O ₄₇ O ₆	Antidote was
Final Compound	Program. The TATP wi The onside	
Needed W	= 243.71250679 x 10 ¹⁵ Hz	Signalling Pro
Needed E	= 160.410697222648 eV	CONTINUES TH
Circular - Frequency	= W _{RAN} = 243.49816757 x 10 ¹⁵ Hz	Normal Function
Resonance - Energy	= E _{RAN} = 160.2706945504522 eV	of the CELL
Frequency - Antidote	= f _{ANT} = 38.7550799891 x 10 ¹⁵ Hz	A cire cece
Resultant - Velocity	= U _{RANT} = 22.445525 x 10 ⁵ m/s	Antidotesuco
Resultant - λ	= λ_{RANT} = 0.5791634271 x 10 ⁻¹⁰ m	the exact
Re Helical - r = ARANT	= r _{RANT} = 0.0921767223 x 10 ⁻¹ ° m	Lesonance of
Modulated SB - Potential	= V _{SBF} = 130.26557967105 Volt	System.
SideBands AN - Potential	= V _{SBA} = 176.297764005497 Volt	Pystem.
Resultant - A - Potential	= V _{RAP} = 162.251321034099 Volt	
ntensity - Current	= I _C = 7.49076060 x 10 ⁻¹⁵ Ampere	The Antidote
Antidote V - Temperature	= T _{VA} = 114.863 Kelvin	1s consisted
Modulated M-Field	= M _{FMOD} = -1.082939 x 10 ⁻⁶ Tesla	from The Elen
Antidote - M-Field	= M _{FANT} = 1.254671 x 10 ⁻⁶ Tesla	in Carrier Wo
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.004107 x 10 ⁻¹⁵ Rad	which is Jule
Phase - Modul. Index	$=$ $\beta_{MANT} = 4.85485732774423$	Resonancewi
Bands UL - Deviation	= ΔWRES = 98.7418693636 x 10 ¹⁵ Hz	the Modulate
Bands UL - Width	= P BRM = 4.8443849986 x 10 ¹⁵ Hz	Elements[1]+
Modulate - Factor	$=$ m_{FAN} $=$ 0.187211882753502	
Bands UL - Amplitude	$=$ A_{BUL} = 0.011522 x 10 ^{-1°} m	Conclusion
Carrier - Power	= P _{CA} = 0.00849654 x 10 ⁻² ° Watt	Conclusion
Γ. Modulated - Power	= P _{TM} = 0.01274482 x 10 ⁻² Watt	TATP-EXPLOSIN
SideBands - Power	= P _{SB} = 0.00424827 x 10 ⁻² ° Watt	ENTERS THE C
he Demodulated FM - Wav	eform 5	By Ascending o
	eform 54	1.0
The Athwart En	rum of H The AEVS OR	the Carrier-Wa 2) By Combining
	1	with Antidotes
	3	resonant with
		the Natural Fre

Compound	
Description	2 -TATP Explosive = [C9 H18 O6] + Mediator = 80.[C O2 H]
Formula	C80C9O160O6H80H18 = 2-ANTIDOTE ENCOTING EXPLOSIVE
Total Number of Elements	353 [1]+[2] Elements.
Stiffness Factor	2880

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	160	0	16	2560	320	320		
2	80	С	12	960	320	320		
3	9	С	12	108	36	36		
4	6	0	16	96	12	12		TATO
5	80	Н	1	80	80	80	N) C9 H160
6	18	Н	1	18	18	18		7 -911160

Bond - Mode

Matrices

Stiffness Matrix

From Athwart EnergyVibrating Spectrum W3-W4=0,6681018Hz $W_3 - W_5 = -3,847.10^{15} Hz$ $W_3 - W_6 = -0,052.10^{15} Hz$ $W_4 - W_5 = -4,516.10^{15} Hz$ - Resonance Frequency WR = 20,114.10 15

Flexibility Matrix

The Antidote	2-TATP Explosive = [C9 H18 O6] + Mediator = 80.[C O2 H] : C ₈₀ C ₉ O ₁₆₀ O ₆ H ₈₀ H ₁₈	Antidotewa
Final Compound	SELF Assemble=2.[N PO4 HO2O2]+Membrane Li- Protein=OC(CH2)34OC+Mem-Plasma=PO4 (CH2)2CHO2C2HOH4CH3(CH2)34+2(COOH):	Detected from
	N ₂ P ₂ PC ₃ 4C ₃ 4C ₂ C ₂ C ₂ C ₂ C ₂ C ₂ C ₀ 8O ₄ O ₄ O ₄ O ₄ O ₂ O ₂ OH ₆₈ H ₆₈ H ₆ H ₄ H ₄ H ₂ H ₂ HH	The TATP wi
Needed W	= 243.71250679 x 10 ¹⁵ Hz	Mediator.
Needed E	= 160.410697222648 eV	
Circular - Frequency	= W _{RAN} = 243.7973423 x 10 ¹⁵ Hz	Continues TH
Resonance - Energy	= E _{RAN} = 160.46761160409002 eV	Normal Functie
Frequency - Antidote	= f _{ANT} = 38.8026965305 x 10 ¹⁵ Hz	of the CELL.
Resultant - Velocity	= U _{RANT} = 22.571954 x 10 ⁵ m/s	
Resultant - λ	= λ_{RANT} = 0.5817109521 x 10 ^{-1°} m	Antidote Succe
Re Helical - r = ARANT	= r_{RANT} = 0.0925821735 x 10 ^{-1°} m	The Exact.
Modulated SB - Potential	= V _{SBF} = 130.26557967105 Volt	Resonance
SideBands AN - Potential	= V _{SBA} = 176.514372764499 Volt	of System
Resultant - A - Potential	= V _{RAP} = 162.45067159021 Volt	1 system
ntensity - Current	= I_C = 7.55680368 x 10 ⁻¹⁵ Ampere	
Antidote V - Temperature	= T _{VA} = 157.248 Kelvin	The Antidote
Modulated M-Field	= M _{FMOD} = -1.082939 x 10 ⁻⁶ Tesla	is consisted.
Antidote - M-Field	= M _{FANT} = 1.150641 x 10 ⁻⁶ Tesla	from the Ele
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.004102 x 10 ⁻¹⁵ Rad	[1]+[2] in
Phase - Modul. Index	$=$ $\beta_{MANT} = 6.19701955411912$	Carrier Wow
Bands UL - Deviation	= ΔWRES = 99.0410440933 x 10 ¹⁵ Hz	which is Jule
Bands UL - Width	= P _{BRM} = 6.4671160884 x 10 ¹⁵ Hz	Resonanced
Modulate - Factor	$=$ m_{FAN} = 0.188209291761339	with the Moder
Bands UL - Amplitude	$=$ A_{BUL} = 0.01543 x 10 ⁻¹⁰ m	2 lements [1]+[2
Carrier - Power	= P _{CA} = 0.00857145 x 10 ⁻² ° Watt	C POLIT
. Modulated - Power	= P _{TM} = 0.01285718 x 10 ⁻² ° Watt	Conclusion
SideBands - Power	= P _{SB} = 0.00428572 x 10 ⁻² ° Watt	
SideBands - Power The Demodulated FM - Wave	= P _{SB} = 0.00428572 x 10 ⁻² Watt	ENTERS THE
(-) The AEVS	(+) The AEVS &	By Ascending or The Carrier W By Combining w Antidotes Reson and the N-Freg

Compound			
Description	3 -TATP Explosive = [C9 H18 O6] + Intracrine Li 40.([NH] 2 O)		
Formula	C9N80H80H18O40O6 = 3-ANTIDOTE	ENCOTING	EXPLOSIVE
Total Number of Elements		ATP	+[5]
Stiffness Factor	720		

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	80	N	14	1120	240	240		
2	40	0	16	640	80	80		
3	9	С	12	108	36	36		
4	6	0	16	96	12	12	1	1
5	80	Н	1	80	80	80	V	TAT
6	18	Н	1	18	18	18		CgHi

Bond - Mode

Matrices

Mass Matrix

×	1120	0	0	0	0	0
	0	640	0	0	0	0
	0	0	108	0	0	0
	0	0	0	96	0	0
	0	0	0	0	80	0
	0	0	0	0	0	18
	x	0 0 0 0	0 640 0 0 0 0 0 0	0 640 0 0 640 0 0 0 108 0 0 0 0 0 0	1120 0 0 0 0 640 0 0 0 0 108 0 0 0 0 96 0 0 0 0	1120 0 0 0 0 0 640 0 0 0 0 0 108 0 0 0 0 0 96 0 0 0 0 0 80

Stiffness Matrix

The TATP-Explosive As Double

Sided-Board Spectrum is Encoted
in the Antidotes.

From Athwart Energy Vibration Spectro
W2-W5 = -2,98 1015 Hz

W3-W5 = -3,87.1015 Hz

W3-W6=-0,073.1015 Hz

W4-W5=-4,52.1015 Hz

W4-W6=-0,72.1015 Hz

The Desononce Frequency of System
WR = 18,00.1015 Hz

Flexibility Matrix

The Antidote	3 -TATP Explosive = [C9 H18 O6] + Intracrine Ligand = 40.([N H] 2 O) : C ₉ N ₈₀ H ₈₀ H ₁₈ O ₄₀ O ₆	Antidote was
Final Compound	SELF Assemble=2.[N PO4 HO2O2]+Membrane Li- Protein=OC(CH2)34OC+Mem-Plasma=PO4 (CH2)2CHO2C2HOH4CH3(CH2)34+2(COOH): N ₂ P ₂ PC ₃ 4C ₃ 4C ₂ C ₂ C ₂ C ₂ C ₂ CO ₈ O ₄ O ₄ O ₄ O ₄ O ₂ O ₂ OH ₆₈ H ₆₈ H ₆₈ H ₆₄ H ₄ H ₄ H ₂ H ₂ HH	Program. The TATPWith the Onside Ligar
Needed W	= 243.71250679 x 10 ¹⁵ Hz	Continuous TH
Needed E	= 160.410697222648 eV	Normal Function
Circular - Frequency	= W _{RAN} = 243.14109532 x 10 ¹⁵ Hz	of the CELL.
Resonance - Energy	= E _{RAN} = 160.03566930220032 eV	7
Frequency - Antidote	= f _{ANT} = 38.6982484996 x 10 ¹⁵ Hz	The Antidote
Resultant - Velocity	= U _{RANT} = 22.670506 x 10 ⁵ m/s	Succeds The
Resultant - λ	= λ_{RANT} = 0.5858276992 x 10 ^{-1°} m	Exact Resonan
Re Helical - r = ARANT	= r _{RANT} = 0.0932373741 x 10 ⁻¹⁰ m	of System
Modulated SB - Potential	= V _{SBF} = 130.26557967105 Volt	of system
SideBands AN - Potential	= V _{SBA} = 176.03923623242 Volt	
Resultant - A - Potential	= V _{RAP} = 162.01339134201 Volt	The Antidote
Intensity - Current	= I_C = 7.66414060 x 10 ⁻¹⁵ Ampere	is consisted
Antidote V - Temperature	= T _{VA} = 237.593 Kelvin	from the gleman
Modulated M-Field	= M _{FMOD} = -1.082939 x 10 ⁻⁶ Tesla	in Carrier-Wave
Antidote - M-Field	= M _{FANT} = 1.927142 x 10 ⁻⁶ Tesla	wich is Jully
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.004113 x 10 ⁻¹⁵ Rad	. Resonated wi
Phase - Modul. Index	$=$ $\beta_{MANT} = 7.04152022370224$	The Modulated
Bands UL - Deviation	= ΔWRES = 98.3847971151 x 10 ¹⁵ Hz	Gloments[1]+[:
Bands UL - Width	$=$ P_{BRM} $=$ 6.4497080833 x 10 ¹⁵ Hz	
Modulate - Factor	$=$ m_{FAN} = 0.186018238050012	Conclusion.
Bands UL - Amplitude	$=$ A_{BUL} $=$ 0.01554 x 10 ⁻¹ ° m	TATP-EXPLOSIVE
Carrier - Power	= P _{CA} = 0.00869320 x 10 ^{-2°} Watt	ENTERS THECE
T. Modulated - Power	= P _{TM} = 0.01303981 x 10 ^{-2°} Watt	
SideBands - Power	= P _{SB} = 0.00434660 x 10 ^{-2°} Watt	1) By Ascending o
he Demodulated FM - Wav		the Corrier Wo
	2 2 3	By Combining
	24	with Antidote
(-) The AEVS	0 (+) The A EVS	Resonant and
	R 22	the N-Frequence
	3	of the Nucley

Compound					
Description	4 -TATP Explosive =78[NO2]	e = [(09 H18 O6] + Sensor N-D	oxide	
Formula	C9H18N78O156O6	=	4-ANTIDOTE	ENCOTING	EXPLOSIVE
Total Number of Elements				21.02	
Stiffness Factor	936			Elemen	13 [1] + [3]

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
	156	0	16	2496	312	312		
2	78	N	14	1092	234	234		
3	9	С	12	108	36	36		TATP :
	6	0	16	96	12	12		C9HI8
;	18	Н	1	18	18	18	(Cymo

Bond - Mode

Matrices

Mass Matrix

Flexibility Matrix

The TATP-Explosive as, Double Sided Bond Spectrum, is Encoted in the Antidotes.

The Resonance Frequency of System WR = 16,55.1015Hz

Common Mass M = m x 13.0637202 kg

The Antidote	A THE RESERVE OF THE PROPERTY OF THE PARTY O	plosive = [C9 H18 O6] + Sensor N- [N O 2] : C ₉ H ₁₈ N ₇₈ O ₁₅₆ O ₆	The Antidote
Final Compound	Protein=OC (CH2)2CHC	mble=2.[N PO4 HO2O2]+Membrane Li- (CH2)34OC+Mem-Plasma=PO4 (2C2HOH4CH3(CH2)34+2(COOH): (C2C2C2C2C2C06O4O4O4O4O2O2OH68H68H6	From Program The TATP with the Local & Sen
Needed W	=	243.71250679 x 10 ¹⁵ Hz	Continuous the
Needed E	=	160.410697222648 eV	Normal Functionin
Circular - Frequency	= W _{RAN}	= 243.53905642 x 10 ¹⁵ Hz	of the CELL
Resonance - Energy	= E _{RAN}	= 160.29760762631247 eV	of the ECEL
Frequency - Antidote	= f _{ANT}	= 38.7615878439 x 10 ¹⁵ Hz	
Resultant - Velocity	= U _{RAN}	= 20.90313 x 10 ⁵ m/s	The Antidote
Resultant - λ	= λ _{RAN}	= 0.5392743454 x 10 ⁻¹ ° m	Succeeds the
Re Helical - r = ARANT	= r _{RAN}	= 0.0858281778 x 10 ⁻¹ ° m	Exact Resonance
Modulated SB - Potential	= V _{SBF}	= 130.26557967105 Volt	
SideBands AN - Potential	= V _{SBA}	= 176.327368388944 Volt	of the System
Resultant - A - Potential	= V _{RAP}	= 162.278566701959 Volt	-
Intensity - Current	= I _C	= 6.49446199 x 10 ⁻¹⁵ Ampere	The Antidote
Antidote V - Temperature	= T _{VA}	= 249.213 Kelvin	is consisted.
Modulated M-Field	= M _{FMOI}	o = -1.082939 x 10 ⁻⁶ Tesla	I com the Element
Antidote - M-Field	= M _{FANT}	= 1.594073 x 10 ⁻⁶ Tesla	in Carrier-Wave
Antidote - Phase - Shift	= φ _{ANT}	= 0.004106 x 10 ⁻¹⁵ Rad	which is July
Phase - Modul. Index	= β _{MAN}	r = 7.74443948250227	Resonated with
Bands UL - Deviation	= ΔWRES	s = 98.7827582153 x 10 ¹⁵ Hz	the Modulated
Bands UL - Width	= P _{BRM}	= 7.7523175688 x 10 ¹⁵ Hz	Relements [1]+[
Modulate - Factor	= m _{FAN}	= 0.187348345353174	- CHONDINI
Bands UL - Amplitude	= A _{BUL}	= 0.017166 x 10 ⁻¹ ° m	Conclusion.
Carrier - Power	= P _{CA}	= 0.00736647 x 10 ⁻² ° Watt	TATP-EXPLOSIVE
T. Modulated - Power	= P _{TM}	= 0.01104971 x 10 ⁻² ° Watt	ENTERS THE CELL
SideBands - Power	= P _{SB}	= 0.00368323 x 10 ^{-2°} Watt	The coop
he Demodulated FM - Wave	eform	N	X R. Ac II . a
		55.6 X	by Ascending O The Carrier Wa
(-) The AEVS		1) The AEVS 2	Antidotes Resonant end the N-Frequent of the Nucleus

Compound		
Description	5 -TATP Explosive = [C9 H18 =12.[C6 H13 N O 2]	06] + Non-Polar Isoleucine
Formula	C72C9H156H18N12O24O6 = 5 -	ANTIDOTE ENCOTING EXPLOSIVE
Total Number of Elements		[1] + Non Polar-Isoleucine.
Stiffness Factor	3744	TI TOUTION IS CONCINE.

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	72	С	12	864	288	288		
2	24	0	16	384	48	48		
3	12	N	14	168	36	36		
4	156	Н	1	156	156	156		
5	9	С	12	108	36	36		TATP =
6	6	0	16	96	12	12		Co His
7	18	Н	1	18	18	18	V	Came

Bond - Mode

288	48	36	156	36	12	18	= 594
С	0	N	Н	С	0	Н	Т
288	48	36	156	36	12	18	594

Matrices

Mass Matrix

					-	
864	0	0	0	0	0	0
0	384	0	0	0	0	0
0	0	168	0	0	0	0
0	0	0	156	0	0	0
0	0	0	0	108	0	0
0	0	0	0	0	96	0
0	0	0	0	0	0	18
	0 0 0 0	0 384 0 0 0 0 0 0 0 0	0 384 0 0 0 168 0 0 0 0 0 0 0 0 0	0 384 0 0 0 0 168 0 0 0 0 156 0 0 0 0	0 384 0 0 0 0 0 168 0 0 0 0 0 156 0 0 0 0 0 108 0 0 0 0	0 384 0 0 0 0 0 0 168 0 0 0 0 0 0 156 0 0 0 0 0 0 108 0 0 0 0 0 96

Stiffness Matrix

The TATE - EXPLOSIVE as, Double Sided Bond Spectrum is Encoted in the Antidotes.

From, Athwart Energy Vibration-Spectrum

 $W_3 - W_4 = -5,50.10^{15} Hz$ $W_5 - W_7 = -0,098.10^{15} Hz$ $W_6 - W_7 = -1,17.10^{15} Hz$

W5-W6=+1,07.1015HZ

The Resonance Frequency of System WR = 24,73.10'5 HZ

Flexibility Matrix

The Antidote	5 -TATP Explosive = [C9 H18 O6] + Non-Polar Isoleucine =12.[C6 H13 N O 2] :	The Antidote
	C72C9H156H18N12O24O6	Was Detected
Final Compound	SELF Assemble=2.[N PO4 HO2O2]+Membrane Li- Protein=OC(CH2)34OC+Mem-Plasma=PO4 (CH2)2CHO2C2HOH4CH3(CH2)34+2(COOH): N ₂ P ₂ PC ₃₄ C ₃₄ C ₂ C ₂ C ₂ C ₂ C ₂ C ₂ C ₀ O ₄ O ₄ O ₄ O ₄ O ₂ O ₂ OH ₆₈ H ₆₈ H ₆₈ H ₆₄ H ₄ H ₄ H ₂ HH	From Program. The TATPwit the Local.
Needed W	= 243.71250679 x 10 ¹⁵ Hz	Continuous the
Needed E	= 160.410697222648 eV	Normal Function
Circular - Frequency	= W _{RAN} = 240.1451581 x 10 ¹⁵ Hz	
Resonance - Energy	= E _{RAN} = 158.06374095396828 eV	of the System
Frequency - Antidote	= f _{ANT} = 38.2214162186 x 10 ¹⁵ Hz	
Resultant - Velocity	= U _{RANT} = 22.675933 x 10 ⁵ m/s	
Resultant - λ	= λ_{RANT} = 0.5932782069 x 10 ⁻¹⁰ m	The Antidote
Re Helical - r = ARANT	= r _{RANT} = 0.0944231593 x 10 ⁻¹⁰ m	Succeeds the
Modulated SB - Potential	= V _{SBF} = 130.26557967105 Volt	
SideBands AN - Potential	= V _{SBA} = 173.870115049365 Volt	Exact Resonance
Resultant - A - Potential	= V _{RAP} = 160.017093887989 Volt	of the System
Intensity - Current	= I _C = 7.86032404 x 10 ⁻¹⁵ Ampere	The Antidote
Antidote V - Temperature	= T _{VA} = 157.798 Kelvin	is Consisted
Modulated M-Field	= M _{FMOD} = -1.082939 x 10 ⁻⁶ Tesla	Stom the Elem
Antidote - M-Field	= M _{FANT} = 1.492879 x 10 ⁻⁶ Tesla	My Corrier-Wo
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.004164 x 10 ⁻¹⁵ Rad	which is fully
Phase - Modul. Index	$=$ $\beta_{MANT} = 4.85391158065765$	Resonated wit
Bands UL - Deviation	= ΔWRES = 95.3888598932 x 10 ¹⁵ Hz	the Modulated
Bands UL - Width	= P _{BRM} = 5.4602023169 x 10 ¹⁵ Hz	Elements [1]+
Modulate - Factor	$=$ m_{FAN} = 0.175863387218027	Non Polor Isolea
Bands UL - Amplitude	= A _{BUL} = 0.013489 x 10 ⁻¹ ° m	
Carrier - Power	= P _{CA} = 0.00891573 x 10 ⁻² ° Watt	Conclusion.
T. Modulated - Power	= P _{TM} = 0.01337359 x 10 ^{-2°} Watt	TATP-Explosiv
SideBands - Power	= P _{SB} = 0.00445786 x 10 ^{-2°} Watt	ENTERS THE CE
he Demodulated FM - Wave	form N	
(-) The AEVS	The AEVS 2	By Ascending of the Carrier Wo By Combining with the Antido Resonant and
	3	the N-Frequent of the Nucleu

Compound		
Description	6 - TAP Exp;osive = [C9 Antidote = 23.[N3 O2 C	9 H18 O6] + NEW Anticancer-
Formula	Ne9O46O6C23C9H138H18	6-ANTIDOTE ENCOTING EXPLOSIVE
Total Number of Elements	309	_ [1]+ NEW ANTICANCER
Stiffness Factor	828	- LIJT NEW ANTICANCER

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	69	N	14	966	207	207		
2	46	0	16	736	92	92		
3	23	С	12	276	92	92		0
4	138	Н	1	138	138	138	(
5	9	С	12	108	36	36		TAT P :
6	6	0	16	96	12	12	7	D (C9 H18
7	18	Н	1	18	18	18	V	(C9 H18

Bond - Mode

207	92	92	138	36	12	18	= 595
N	0	С	Н	С	0	Н	T
207	92	92	138	36	12	18	595

Matrices

Mass Matrix

m ×	966	0	0	0	0	0	0
	0	736	0	0	0	0	0
	0	0	276	0	0	0	0
	0	0	0	138	0	0	0
	0	0	0	0	108	0	0
	0	0	0	0	0	96	0
	0	0	0	0	0	0	18

Stiffness Matrix

THE TATP-EXPLOSIVE as, Double Sided Bond-Spectrum is Encoted in the Antidotes.

From Athwart Energy Vibration Spectrum
W3-W4 = -2,78.1018 Hz
W5-W6 = +1,11.1018 Hz
W5-W4 = -0,037.1018 Hz
W6-W4 = -1,15.1015 Hz

The Lesonomice frequency of System WR = 22,297.1015 Hz

Flexibility Matrix

The Antidote	Antio	AP Exp cancer-A	The Antidote		
Final Compound	SEL Prote (CH2 N ₂ P ₂	Page Control of the C	a NEW Anticonce		
Needed W	=		1	243.71250679 x 10 ¹⁵ Hz	Continuous the
Needed E	-		1	160.410697222648 eV	Normal Functioning
Circular - Frequency	=	W _{RAN}	=	244.07568744 x 10 ¹⁵ Hz	of the System.
Resonance - Energy	=	E _{RAN}	=	I SHAND WAS AND SHAND STORY OF THE STORY OF	
Frequency - Antidote	=	f _{ANT}	=	38.8469978417 x 10 ¹⁵ Hz	
Resultant - Velocity	=	U _{RANT}	=	22.499969 x 10 ⁵ m/s	7 1 1 + 1 +
Resultant - λ	=	λ _{RANT}		0.5791945431 x 10 ⁻¹ ° m	The Antidote
Re Helical - r = ARANT	=	r _{RANT}		0.0921816745 x 10 ⁻¹ ° m	Succeeds the
Modulated SB - Potential	=	V _{SBF}	=	130.26557967105 Volt	Exact Resonance
SideBands AN - Potential	=	V _{SBA}	=		of the Bystem.
Resultant - A - Potential	=	200	=	162.636142662885 Volt	
Intensity - Current	=	Ic	-	7.49156551 x 10 ⁻¹⁵ Ampere	TI 1 +14
Antidote V - Temperature	=	TVA	=	154.153 Kelvin	The Antidote
Modulated M-Field	=	M _{FMOD}	=	-1.082939 x 10 ⁻⁶ Tesla	is Consisted
Antidote - M-Field	= -	M _{FANT}		1.52661 x 10 ⁻⁶ Tesla	from the Elemen
Antidote - Phase - Shift	=	Φ _{ANT}		0.004097 x 10 ⁻¹⁵ Rad	TAP in Cocrier
Phase - Modul. Index	=	β _{MANT}	_		Wave with the
Bands UL - Deviation	=	ΔWRES		99.3193892313 x 10 ¹⁵ Hz	Modulated
Bands UL - Width	=	211	=	5.5495711202 x 10 ¹⁵ Hz	Elements [1]+
Modulate - Factor	=	m _{FAN}	=	0.189135061955956	NEW Anticances
Bands UL - Amplitude	=	A _{BUL}	=	0.013169 x 10 ⁻¹ ° m	P 0 1
Carrier - Power	=	PCA	=		Conclusion.
T. Modulated - Power	=	P _{TM}	=	0.01274619 x 10 ⁻² ° Watt	TATP-EXPLOSIV
SideBands - Power	=		1211	0.00424873 x 10 ⁻² ° Watt	ENTERSTHECE
he Demodulated FM - Wave	eform	35	27 78 1015	그렇게 보면 하게 하는 이 얼마님이 집에 하게 하면 하셨습니다. 그리는 아무슨 사람들이다.	By Ascending or
			200		the Carrier-Wa
(-) The AEVS			1	T) The ACVS	By Combining with the Antidot Resonant and.
			2		the N-Frequency

Compound

Description	7 TAD Evelosive = 1 CO 1149 OC 114 JATD = 41 C40 1140
Description	7 - TAP Explosive = [C9 H18 O6]+4.dATP = 4.[C10 H12
	N5 O12 P4 1+22^ Hz

C40C9H48H18N20O48O6P16 = 7-ANTIDOTE ENCOTING EXPLOSIVE.

205
TAP+4dATP CANCER Formula Total Number of Elements 205

Unbonded

Properties

Stiffness Factor

110	perties						
#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded
1	48	0	16	768	96	96	
2	16	Р	31	496	48	48	
3	40	С	12	480	160	160	
4	20	N	14	280	60	60	
5	9	С	12	108	36	36	
6	6	0	16	96	12	12	
7	48	Н	1	48	48	48	-
8	18	Н	1	18	18	18	1

C9H18O6

Bond - Mode

Matrices

Mass Matrix

0 0 The TATP-EXPLOSIVE as, Double Sited Bond Spectrum. is Encoted in the Antidotes.

From Athwart Energy Vibration Specients - 2,41.10 5Hz

W4-W3 = -2,41.10 5Hz

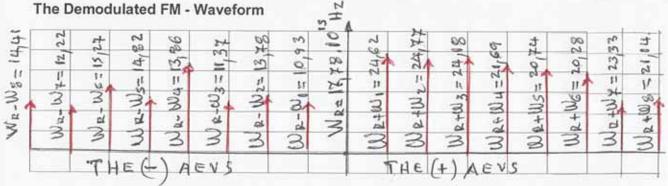
W4-W4 = -1,64.10 5Hz

W4-W8 = +0,55.10 5Hz

W5-W4 = -2,597.10 5Hz

W5-W4 = -0,40810 5HZ

The Resonance Frequency of System


WD = 17,78.10 5Hz.

Stiffness Matrix

0 -60 96 -36 0 0 0 0 -36 48 -12 0 0 -18

W6-W7 = -3,05.1015HZ W6-W8 = -0,861.1015 HZ

The Antidote			ive = [C9 H18 O6]+4.dATP = 4.[C10 4]+22^.Hz : C40C9H48H18N20O48O6P16	LHE ANTIDOTE
Final Compound	SEL Prof (CH N ₂ P	F Assembletein=OC(CH 2)2CHO2C	e=2.[N PO4 HO2O2]+Membrane Li- H2)34OC+Mem-Plasma=PO4 2HOH4CH3(CH2)34+2(COOH): C2C2C2C2C08O4O4O4O4O2O2OH68H68H6	FROM. PROGRAM INTO A NORMA CELL
Needed W	=	ſ	243.71250679 x 10 ¹⁵ Hz	
Needed E	=	1	160.410697222648 eV	THE ABSOLUTE
Circular - Frequency	=	W _{RAN} =	243.81891121 x 10 ¹⁵ Hz	RESONANCE IS
Resonance - Energy	=	E _{RAN} =	160.48180827601132 eV	SUCCEEDED
Frequency - Antidote	=	f _{ANT} =	38.8061294298 x 10 ¹⁵ Hz	WITH 4. dATP
Resultant - Velocity	=	U _{RANT} =	24.500047 x 10 ⁵ m/s	WITH HIGHT
Resultant - λ	=	λ _{RANT} =	0.6313447843 x 10 ⁻¹ ° m	
Re Helical - r = ARANT	=	r _{RANT} =	0.1004816432 x 10 ⁻¹ ° m	The Antidote is
Modulated SB - Potential	=	V _{SBF} =	130.26557967105 Volt	Consisted from
SideBands AN - Potential	=	V _{SBA} =	176.529989103612 Volt	TAP Element.
Resultant - A - Potential	=	V _{RAP} =	162.465043704712 Volt	+4d[ATP] on.
Intensity - Current	= 1	I _C =	8.90136998 x 10 ⁻¹⁵ Ampere	Neutrial Elemen
Antidote V - Temperature	=	T _{VA} =	203.098 Kelvin	Conclusion
Modulated M-Field	=	M _{FMOD} =	-1.082939 x 10 ⁻⁶ Tesla	TATP EXPLOSIVE
Antidote - M-Field	=	M _{FANT} =	1.743311 x 10 ⁻⁶ Tesla	ENTERS THE CELL
Antidote - Phase - Shift	=	φ _{ANT} =	0.004101 x 10 ⁻¹⁵ Rad	- By Ascending ON
Phase - Modul. Index	=	$\beta_{MANT} =$	7.14329180789747	the Carrier Wow
Bands UL - Deviation	=	ΔWRES =	99.0626129997 x 10 ¹⁵ Hz	By Combining
Bands UL - Width	=	P _{BRM} =	4.8507661787 x 10 ¹⁵ Hz	with the Antidoto
Modulate - Factor	= 1	m _{FAN} =	0.188281105049571	Resonant and
Bands UL - Amplitude	=	A _{BUL} =	0.01256 x 10 ⁻¹ ° m	the N-Frequency
Carrier - Power	=	P _{CA} =	0.01009656 x 10 ^{-2°} Watt	of the Nucleus
T. Modulated - Power	=	P _{TM} =	0.01514484 x 10 ^{-2°} Watt	- de micea
SideBands - Power	=	P _{SB} =	0.00504828 x 10 ⁻² ° Watt	

Compound

Description

SELF-Assemple=2[NPO4HO2O2]+Membrane Li-ProteIn=OC[CH2]34OC+MemPlasma=PO4 [CH2]2CHO2C2HOH4CH3[CH2]34+2 [COOH]+Cancerous.dATP=4[C10H12N5O12P4]

Formula C40C34C34C2C2C2CCCCH68H68H48H4H4H3H2H2HHN20N2O

> THE MODULATING WAVE . 48O8O4O4O4O2O2O2OOOP16P2P

Total Number of Elements 437

Stiffness Factor 8160 GCANCEROUS 44 ATP

Properties

The Position OF Cancerous dATP

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	48	0	16	768	96	96		
2	16	Р	31	496	48	48		Cancer
3	40	С	12	480	160	160	(d ATI
4	34	С	12	408	136	136	K	(40 H48 N
5	34	С	12	408	136	136	K	P16
6	20	N	14	280	60	60	/	110
7	8	0	16	128	16	16		
8	68	Н	1	68	68	68	1	
9	68	Н	1	68	68	68	AR	
10	4	0	16	64	8	8		
11	4	0	16	64	8	8		
12	4	0	16	64	8	8	14	
13	2	Р	31	62	6	6		
14	48	Н	1	48	48	48		
15	2	0	16	32	4	4	MX	
16	2	0	16	32	4	4	X	
17	2	0	16	32	4	4	MX	
18	1	Р	31	31	3	3	W	
19	2	N	14	28	6	6		THE STATE OF THE S
20	2	С	12	24	8	8	, We	
21	2	С	12	24	8	8	1	
22	2	С	12	24	8	8	W.	
23	1	0	16	16	2	2		
24	1	0	16	16	2	2	4	
25	1	0	16	16	2	2	N.	
26	1	С	12	12	4	-4	NK.	
27	1	С	12	12	4	4	a	
28	1	С	12	12	4	4	V	
29	1	С	12	12	4	4	(*
30	4	Н	1	4	4	4		
31	4	Н	1	4	4	4	(
32	3	Н	1	3	3	3	1	-
33	2	Н	1	2	2	2		
34	2	Н	. 1	2	2	2	(
36	-!-	H	- 1	- 1	- 1			
30		н	- 1	1	- 1	-1	· ·	•

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

Resultant - Velocity

Re Helical - r = AR

Bands UL - Amplitude

Resultant - Potential

Resultant - A

Control of the second of the s			
W ₁ = 80.980908 x 10 ¹⁵ Hz	U ₁ = 1.562439 x 10 ^s m/s	$\lambda_1 = 0.121227 \times 10^{-10} \text{ m}$	$A_1 = 0.019294 \times 10^{-10} \text{ m}$
W ₂ = 26.875834 x 10 ¹⁵ Hz	U ₂ = 1.120038 x 10° m/s	$\lambda_2 = 0.261849 \times 10^{-10} \text{ m}$	$A_2 = 0.041675 \times 10^{-10} \text{ m}$
W ₃ = 46.615106 x 10 ¹⁶ Hz	u _a = 1.499461 x 10 ⁵ m/s	$\lambda_3 = 0.20211 \times 10^{-10} \text{ m}$	A ₃ = 0.032167 x 10 ⁻¹ ° m
W ₄ = 41.250162 x 10 ¹⁵ Hz	U ₄ = 1.529943 x 10 ⁶ m/s	$\lambda_4 = 0.233039 \times 10^{-10} \text{ m}$	A ₄ = 0.037089 x 10 ⁻¹⁰ m
W ₅ = 48.960688 x 10 ¹⁵ Hz	us = 1.66681 x 10° m/s	$\lambda_6 = 0.213904 \times 10^{-10} \text{ m}$	As = 0.034044 x 10 ⁻¹⁰ m
Wes = 37.644916 x 10 ¹⁵ Hz	U ₆ = 1.764276 x 10 ⁵ m/s	$\lambda_6 = 0.294469 \times 10^{-18} \text{ m}$	A ₆ = 0.046866 x 10 ⁻¹⁰ m
W ₇ = 9.815292 x 10 ¹⁵ Hz	U ₇ = 1.332414 x 10 ⁵ m/s	$\lambda_7 = 0.852935 \times 10^{-19} \text{ m}$	$A_7 = 0.135749 \times 10^{-19} \text{ m}$
We = 5.348683 x 1015 Hz	us = 1.349465 x 10 ⁵ m/s	$\lambda_a = 1.585238 \times 10^{-10} \text{ m}$	A ₈ = 0.252298 x 10 ⁻¹⁰ m
W ₉ = 9.360369 x 10 ¹⁸ Hz	U ₉ = 1.78519 x 10° m/s	$\lambda_9 = 1.198316 \times 10^{-10} \text{ m}$	$A_9 = 0.190718 \times 10^{-10} \text{ m}$
W ₁₀ = 11.630398 x 10 ¹⁵ Hz	U ₁₀ = 2.051161 x 10 ⁵ m/s	$\lambda_{10} = 1.108116 \times 10^{-10} \text{ m}$	$A_{10} = 0.176362 \times 10^{-10} \text{ m}$
W ₁₄ = 11.630398 x 10 ¹⁶ Hz	U ₁₁ = 2.051161 x 10 ⁵ m/s	$\lambda_{11} = 1.108116 \times 10^{-10} \text{ m}$	A ₁₁ = 0.176362 x 10 ⁻¹⁰ m
W ₁₂ = 12.464561 x 10 ¹⁹ Hz	U ₁₂ = 2.123445 x 10 ⁵ m/s	$\lambda_{12} = 1.070395 \times 10^{-10} \text{ m}$	A ₁₂ = 0.170359 x 10 ⁻¹⁰ m
W ₁₃ = 6.431301 x 10 ¹⁵ Hz	U ₁₃ = 1.549694 x 10 ⁵ m/s	$\lambda_{13} = 1.514004 \times 10^{-10} \text{ m}$	A ₁₃ = 0.240961 x 10 ⁻¹⁰ m
W ₁₄ = 8.052168 x 10 ¹⁵ Hz	U ₁₄ = 1.970735 x 10 ⁵ m/s	$\lambda_{14} = 1.537784 \times 10^{-10} \text{ m}$	A ₁₄ = 0.244746 x 10 ⁻¹⁰ m
W ₁₅ = 8.223933 x 10 ¹⁵ Hz	U ₁₅ = 2.439255 x 10 ⁵ m/s	$\lambda_{15} = 1.863621 \times 10^{-10} \text{ m}$	A ₁₅ = 0.296604 x 10 ⁻¹⁰ m
W ₁₆ = 8.223933 x 10 ¹⁵ Hz	U ₁₆ = 2.439255 x 10 ⁵ m/s	$\lambda_{16} = 1.863621 \times 10^{-10} \text{ m}$	A ₁₆ = 0.296604 x 10 ⁻¹ ° m
W ₁₇ = 8.813775 x 10 ¹⁸ Hz	U ₁₇ = 2.525216 x 10 ⁵ m/s	$\lambda_{17} = 1.800182 \times 10^{-10} \text{ m}$	A ₁₇ = 0.286508 x 10 ⁻¹⁰ m
$W_{18} = 8.131002 \times 10^{15} Hz$	U ₁₈ = 2.464244 x 10 ⁵ m/s	$\lambda_{18} = 1.90423 \times 10^{-10} \text{ m}$	A ₁₈ = 0.303068 x 10 ⁻¹ ° m
W ₁₉ = 8.664267 x 10 ¹⁵ Hz	U ₁₉ = 2.676575 x 10 ⁵ m/s	$\lambda_{19} = 1.941008 \times 10^{-10} \text{ m}$	A ₁₉ = 0.308921 x 10 ⁻¹⁰ m
W ₂₀ = 10.004634 x 10 ¹⁵ Hz	U ₂₀ = 3.106615 x 10 ⁵ m/s	$\lambda_{20} = 1.95104 \times 10^{-10} \text{ m}$	A ₂₀ = 0.310518 x 10 ⁻¹ ° m
W ₂₁ = 10.004634 x 10 ¹⁵ Hz	U ₂₁ = 3.106615 x 10 ⁶ m/s	$\lambda_{21} = 1.95104 \times 10^{-10} \text{ m}$	A ₂₁ = 0.310518 x 10 ⁻¹⁰ m
W ₂₂ = 12.782993 x 10 ¹⁵ Hz	U ₂₂ = 3.511585 x 10 ⁵ m/s	$\lambda_{22} = 1.726038 \times 10^{-10} \text{ m}$	$A_{22} = 0.274708 \times 10^{-10} \text{ m}$
W ₂₃ = 5.815199 x 10 ⁴⁵ Hz	U ₂₃ = 2.90078 x 10 ^s m/s	$\lambda_{23} = 3.134224 \times 10^{-10} \text{ m}$	$A_{23} = 0.498827 \times 10^{-10} \text{ m}$
W ₂₄ = 5.815199 x 10 ¹⁵ Hz	$U_{24} = 2.90078 \times 10^{8} \text{ m/s}$	$\lambda_{24} = 3.134224 \times 10^{-10} \text{ m}$	$A_{24} = 0.498827 \times 10^{-10} \text{ m}$
W ₂₅ = 4.700218 x 10 ¹⁵ Hz	$U_{25} = 2.607904 \times 10^{5} \text{ m/s}$	$\lambda_{25} = 3.486208 \times 10^{-10} \text{ m}$	A ₂₅ = 0.554847 x 10 ⁻¹⁰ m
W ₂₆ = 7.074344 x 10 ⁴⁵ Hz	$U_{26} = 3.694409 \times 10^{6} \text{ m/s}$	$\lambda_{26} = 3.281245 \times 10^{-10} \text{ m}$	$A_{26} = 0.522226 \times 10^{-10} \text{ m}$
W ₂₇ = 7.074344 x 10 ⁴⁵ Hz	$U_{27} = 3.694409 \times 10^{5} \text{ m/s}$	$\lambda_{27} = 3.281245 \times 10^{-10} \text{ m}$	$A_{27} = 0.522226 \times 10^{-10} \text{ m}$
W ₂₈ = 7.074344 x 10 ¹⁵ Hz	U ₂₈ = 3.694409 x 10 ⁵ m/s	$\lambda_{za} = 3.281245 \times 10^{-10} \text{ m}$	$A_{28} = 0.522226 \times 10^{-10} \text{ m}$
W ₂₉ = 7.074344 x 10 ¹⁵ Hz	$U_{29} = 3.694409 \times 10^{5} \text{ m/s}$	$\lambda_{29} = 3.281245 \times 10^{-10} \text{ m}$	A ₂₉ = 0.522226 x 10 ⁻¹⁰ m
W ₃₀ = 1.297246 x 10 ¹⁵ Hz	$U_{30} = 2.740146 \times 10^{5} \text{ m/s}$	$\lambda_{30} = 13.27184 \times 10^{-10} \text{ m}$	A ₃₀ = 2.112279 x 10 ⁻¹⁰ m
W ₃₁ = 1.520179 x 10 ¹⁵ Hz	Ua1 = 2.966265 x 10 ⁵ m/s	$\lambda_{a1} = 12.260126 \times 10^{-10} \text{ m}$	A ₃₁ = 1.95126 x 10 ⁻¹⁰ m
W ₃₂ = 1.386232 x 10 ¹⁵ Hz	U ₃₂ = 3.270768 x 10° m/s	$\lambda_{32} = 14.82497 \times 10^{-10} \text{ m}$	$A_{32} = 2.359467 \times 10^{-10} \text{ m}$
W ₃₃ = 0.917292 x 10 ¹⁵ Hz	u ₃₃ = 3.258601 x 10 ⁵ m/s	$\lambda_{33} = 22.320486 \times 10^{-10} \text{ m}$	A ₃₃ = 3.552416 x 10 ⁻¹ ° m
W ₃₄ = 1.254673 x 10 ¹⁵ Hz	$U_{34} = 3.811033 \times 10^{6} \text{ m/s}$	$\lambda_{34} = 19.084997 \times 10^{-10} \text{ m}$	A ₃₄ = 3.037472 x 10 ⁻¹⁰ m
W ₃₅ = 0.648623 x 10 ¹⁵ Hz	U ₃₅ = 3.875152 x 10 ⁵ m/s	$\lambda_{35} = 37.538433 \times 10^{-10} \text{m}$	A ₃₅ = 5.974427 x 10 ⁻¹ ° m
W ₃₆ = 1.232835 x 10 ¹⁵ Hz	U ₃₆ = 5.342506 x 10 ⁶ m/s	$\lambda_{36} = 27.228258 \times 10^{-10} \text{ m}$	A ₃₆ = 4.333512 x 10 ⁻¹ ° m
Circular - Frequency	= W _R =	242.397516 x 10 ¹⁵ Hz	1
Resonance - Energy	= E _R =	159.54624483458804 eV	THE ENERGY S
		100.0 10E 1100 10000 1 0 V	- HE ENERGY W

UR

λR

rR

ARB

VRP

=

163.712108 x 105 m/s

0.675386905 x 10⁻¹⁰ m

159.545587864139 Volt

4.243581 x 10⁻¹° m

0.337693 x 10⁻¹° m

THE ENERGY SPECTRUM
OF THE CANCEROUS
MODULATING WAVE
Signals

Comparison Results

The Initial Healthy [Carrier] Compound

DECEPTIONING THE CELLS <EXPLOSIVE> = [C9 H18 O6]+Mediator+Sensor+Signal+Ligand :

C9C2CN2NNH18H3H2H2O6O4O2OOO

W RI 45.80009 x 1015 Hz E RI 30.14565673029671 eV

f RI 7.289526 x 1015 Hz

45.43119 x 105 m/s U RI

A RI 6.232577 x 10⁻¹⁰ m

ARRI

0.061997 x 10⁻¹⁰ m

V_{RI} 30.1455325982266 Volt V SBI 33.1602224033264 Volt

P RI 0.98395575 x 10-2° Watt

P RMI 1.47593362 x 10-2° Watt

P BRMI 0.49197787 x 10-2° Watt THE INITIAL ENERGY SDECTRUM.

E-SINITIAL

Helical r RI = ARI = 0.9919454373 x 10⁻¹⁰ m

M-Field MFI 0.725072 x 10-6 Tesla

Tvi = 1,004.451 Kelvin

Ici = 0.1335274783 x 10⁻¹² Ampere

The Final Deseased [Modulated] Compound

SELF-Assemple=2[NPO4HO2O2]+Membrane Li-ProteIn=OC[CH2]34OC+MemPlasma=PO4 [CH2]2CHO2C2HOH4CH3[CH2]34+2[COOH]+Cancerous.dATP=4

000P16P2P

W RF 242.397516 x 1015 Hz E RF 159.54624483458804 eV

f RF 38.579901 x 1015 Hz

U RF 163.712108 x 105 m/s

λ RF 4.243581 x 10⁻¹⁰ m

A RBF 0.018761 x 10⁻¹° m

V_{RF} 159.545587864139 Volt

V SBF 175.500869318047 Volt

P RF 0.45614747 x 10-2° Watt

PRME 0.68422120 x 10-2° Watt

P BRMF 0.22807373 x 10-2° Watt

Complementary

W_{RC} 393.19485293 x 1015 Hz 258.799039339364 eV E RC

f max - UB 45.869426 x 1015 Hz

f min - UB 31.290375 x 1015 Hz B IF = 0.811053799720885

= m_{IF} 0.732403338851253

ΔW RES = 438.994943 x 1015 Hz

V_{SBD} 284.681293829441 Volt

AW BAN

0.91229494 x 10-2° Watt P TBW

THE FINAL ENERGY SPECTRUM.

E-SFINAL L CANCEROUS,

Helical r RF = ARF = 0.675386905 x 10⁻¹° m

M-Field MFF = 0.128911 x 10-6 Tesla

TyF = 1,989.04 Kelvin

ICF = 0.0116960311 x 10⁻¹² Ampere

THE NEEDED ENERGY SPECTRUM. E-SDEMOD.

Ni = 16 NF = 36

M-Field MFN = -1.192321 x 10-6 Tesla

Icc = 9.61385552 x 10⁻¹⁵ Ampere

The Healthy [Demodulated] Final Equilibrate

0 x 1015 Hz

W RC + W RI 438.99494255 x 1015 Hz

ERCTER 288,944696 . eV

Compound		
Description	1 - TATP Sabotager = [C9 H18 15.[C10 H12 N5 O12 P4]	3 O6] + Cancerous d.ATP =
Formula	C150C9H180H18N75O180O6P60	= ANTIDOTE ENCOTING BOTH
Total Number of Elements	678	TATP SABOTAGER & CANCER
Stiffness Factor		TATP+ ISd[ATP]

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	180	0	16	2880	360	360		
2	60	Р	31	1860	180	180	(CANCE
3	150	С	12	1800	600	600	K	15.dA
4	75	N	14	1050	225	225		13.30
5	180	Н	1	180	180	180		
6	9	С	12	108	36	36		
7	6	0	16	96	12	12	(
8	18	Н	1	18	18	18		

Bond - Mode

360	180	600	225	180	36	12		= 161
0	Р	С	N	Н	С	0	Н	T 1
360	180	600	225	180	36	12	18	161

THE TATP Sabotager COHISOG

Matrices

Mass Matrix

Ĭ	1							
m ×	2880	0	0	0	0	0	0	0
	0	1860	0	0	0	0	0	0
	0	0	1800	0	0	0	0	0
	.0	0	0	1050	0	0	0	0
	0	0	0	0	180	0	0	0
	0	0	0	0	0	108	0	0
	0	0	0	0	0	0	96	0
	0	0	0	0	0	0	0	18

THE SABOTAGER IS FREE FROM. CANCEROUS PART. AND SO CAN ACT AND. EXPLODE.

THE TATP-EXPLOSIVE OLS, Double Sided Bond Spectrum is encoted in the Antidotes.

Stiffness Matrix

		540 -180 0	-180	0	0	0	0	0	0
k	х	-180	780	-600	0 0	0	0	0	0
		0	-600	825	-225	0	0	0	0
		0	0	-225	405	-180	0	0	0
		0			-180				
		0	0	0	0	-36	48	-12	0
		0	0	0	0	0	-12	30	-18
		0	0	0	0	0	0	-18	18

From Athwart Energy Vibration Spectrum
Wz-W3 = -5,84.109Hz
Wz-W4 = -0,72.1015Hz
Wz-W5 = -2,25.1015Hz
W4-W5 = -1,53.1015Hz
W7-W8 = -1,11.1015Hz

The Resonance Frequency of System, WR=34,58.1015HZ

The Antidote	1 - TATP Sabo	tager = [C9 H18 O6] + Cancerous	THE ANTIPOT
The Antidote	d.ATP = 15.[C C ₁₅₀ C ₉ H ₁₈₀ H ₁₈ N ₇	10 H12 N5 O12 P4] : 75O180O6P60	WAS DETECTE
	SELF-Assemple		
	ProteIn=OC[CH	FROM PROGRAM	
Final Compound	TOTAL CONTRACTOR STATE OF THE PROPERTY OF THE	2HOH4CH3[CH2]34+2	INTO A CANCER
		erous.dATP=4[C10H12N5O12P4]; 2CCCCH68H68H48H4H4H3H2H2HHN20N2O	CELL .
		20200P ₁₆ P ₂ P	+
Needed W	= r	438.99494255 x 10 ¹⁵ Hz	
Needed E	=	288.944696069661 eV	T //
Circular - Frequency	= W _{RAN} =	SENSE BURGO	THE ABSOLUTE
Resonance - Energy	= E _{RAN} =	THE THE	REASONANCE 1
Frequency - Antidote	= f _{ANT} =	69.7339305822 x 10 ¹⁵ Hz	SUCCEEPED
Resultant - Velocity	= U _{RANT} =	29.226382 x 10 ⁵ m/s	WITH 15. dATP
Resultant - λ	= λ _{RANT} =	0.4191127927 x 10 ⁻¹ ° m	A - 4
Re Helical - r = ARANT	= r _{RANT} =	THE CONTROL OF THE CO	ANTIDOTE JOIN
Modulated SB - Potential	= V _{SBF} =	258.800110531825 Volt	THE DANGEROUS
SideBands AN - Potential	= V _{SBA} =	317.221278872683 Volt	CANCEROUS ATON
Resultant - A - Potential	= V _{RAP} =	AND THE PARTY OF T	TO BUILD COMPONS
Intensity - Current	1.000	3.01189110 x 10 ⁻¹⁵ Ampere	FOR A NORMAL
Antidote V - Temperature	= T _{VA} =	524 COMPONENT INC. 12-12	
Modulated M-Field	= M _{FMOD} =	-1.192321 x 10 ⁻⁶ Tesla	Conclusion.
Antidote - M-Field		0.779189 x 10 ⁻⁶ Tesla	TATP-PEXPOSIVE
Antidote - Phase - Shift	= φ _{ANT} =	0.002282 x 10 ⁻¹⁵ Rad	ENTERS THE CEL
Phase - Modul. Index	= β _{MANT} =	6.00905905393738	By Ascendingon C-
Bands UL - Deviation	= ΔWRES =	105 7107007007 101511	By Combining with
Bands UL - Width	= P _{BRM} =	8.7167413228 x 10 ¹⁵ Hz	Andidotes Kesonomt. N-Frequence & Nuclei
Modulate - Factor	= m _{FAN} =	0.102578191346055	2 4
Bands UL - Amplitude	= A _{BUL} =	0.008338 x 10 ⁻¹ ° m	THE SIGNAL OPECT
Carrier - Power	123	0.00444940 x 10 ⁻² ° Watt	FREQUENCIES
T. Modulated - Power	= P _{TM} =	0.00667410 x 10 ⁻² ° Watt	ARE DOUBLED IN
SideBands - Power	= P _{SB} =	0.00222470 x 10 ⁻² Watt	THE CANCERUS-CE
The Demodulated FM - Wave		1	AF
8 2 2 2 2	542 SHZ	35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80 25
R-WF=33/12 R-WS=23/12 R-W4=25/37 R-W3=2021	We - 246.10 54	Att 11 11 11 11 11	WR+W7=36,8
WR-WE=3	= 1775 = = = = = = = = = = = = = = = = = =	Wetwe=	B-+W+
Wa-u	We -	Wetwa Wetwa Wetwa Wetwa	Pr.
	DECTRUM	The (4) AEVS SPECTRUM	

Compound

2 - TATP Sabotager = [C9 H18 O6] + Cancerous d.ATP = Description

4.[C10H12 N5 O12 P4]

C40C9H48H18N20O48O6P16 = THE ANTIDOTE ENCOTES BOTH Formula

Total Number of Elements 205

Stiffness Factor 1440

TATP Sabotager and Conceeous 1- TO THE MINIMUM - RATIO.

Bonded

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	
1	48	0	16	768	96	96	
2	16	Р	31	496	48	48	
3	40	С	12	480	160	160	
4	20	N	14	280	60	60	
5	9	С	12	108	36	36	
6	6	0	16	96	12	12	
7	48	Н	1	48	48	48	
8	18	Н	1	18	18	18	

CANCEROUS 4 dATP

Unbonded

Bond - Mode

96	48	160	60	36	12	48	18 :	= 478
0	P	С	N	С	0	Н	Н	T
96	48	160	60	36	12	48	18	478

THE TATP SABOTAGER C9 H1806

Matrices

Mass Matrix

0 0 0 0 496 0 0 0 0 0 480 0 0 0 0 280 0 0 0 108 0 0 0 0 0 0 48 0

SABOTAGER TATP IS ENTAGLED IN CANCEROUS AND IS UNABLE TO ACT (TO ACT MUST BE FREE).

THE TATP-EXPLOSIVE as Double Sided Bond Spectrum. is Encoted in the Antidotes

18 From Athwart Energy Vibration Spectru W2-W3 = - 2,41.10 742

W2-W7 = -1,56.1015 HZ W4-W7 = -1,64.1015 HZ

W5-W7 = -2,59.1015HZ

WS-W8 = -0,408.1015HZ

W6-W7 = -3,05.1015 HZ W6-W8 = -0,861.1015 HZ

he Kesonomice Frequency of WR= 17,78.1015HZ

Stiffness Matrix

0 -48 208 -160 O 0 0 -160 220 -60 0 0 -60 96 -36 0 -36 48 -12 0 -12 60 -48 66 0 -18

		1	1.31771	
			1.93429	
			2.50798	
A -	1.0546640	×	2.51877	
Φ ₇ =	1.0546612	×	2.6439	
			1.22827	
			1	
			1.02093	
		1	1.2907	
			1.89465	
			2.45657	
	4.070700		2.46714	
Φ ₈ =	1.076732	×	2.58971	
			1.20309	
			0.9795	
			1	

Modes Dynamic - Results

$\lambda_1 = 1.38974022 \text{ nm}$	$W_1 = 6.845898 \times 10^{15} Hz$	$f_1 = 1.089559 \times 10^{15} Hz$	E ₁ = 4.50597602 eV
$\lambda_2 = 2.04002588 \text{ nm}$	$W_2 = 3.995438 \times 10^{15} Hz$	$f_2 = 0.635894 \times 10^{15} Hz$	$E_2 = 2.6298008 \text{ eV}$
$\lambda_3 = 2.64507209 \text{ nm}$	$W_3 = 6.406235 \times 10^{15} Hz$	$f_3 = 1.019584 \times 10^{15} Hz$	E ₃ = 4.21658935 eV
$\lambda_4 = 2.65645245 \text{ nm}$	W ₄ = 3.91459 x 10 ¹⁵ Hz	$f_4 = 0.623026 \times 10^{15} Hz$	E ₄ = 2.57658619 eV
$\lambda_5 = 2.78842062 \text{ nm}$	$W_5 = 2.959605 \times 10^{15} Hz$	$f_5 = 0.471036 \times 10^{15} Hz$	E ₅ = 1.94801448 eV
$\lambda_6 = 1.2954108 \text{ nm}$	$W_6 = 2.506966 \times 10^{15} Hz$	$f_6 = 0.398996 \times 10^{15} Hz$	E ₆ = 1.65008737 eV
$\lambda_7 = 1.0546612 \text{ nm}$	W7 = 5.556813 x 1015 Hz	f ₇ = 0.884394 x 10 ¹⁵ Hz	E ₇ = 3.65749893 eV
$\lambda_{B} = 1.076732 \text{ nm}$	W ₈ = 3.367783 x 10 ¹⁵ Hz	$f_8 = 0.535999 \times 10^{15} Hz$	E ₈ = 2.21667751 eV

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

$W_1 = 6.845898 \times 10^{16} Hz$	U۱	= 0.454	284 x 10°	m/s	$\lambda_1 = 0.416943 \times 10^{-10} \text{ m}$	
W ₂ = 3.995438 x 10 ¹⁵ Hz	U2	= 0.431	851 x 10°	m/s	$\lambda_2 = 0.679124 \times 10^{-10} \text{ m}$	
$W_3 = 6.406235 \times 10^{15} Hz$	Ua	= 0.555	87 x 10 ⁵ i	m/s	$\lambda_3 = 0.545193 \times 10^{-10} \text{ m}$	
W ₄ = 3.91459 x 10 ¹⁵ Hz	U4	= 0.568	927 x 10°	m/s	$\lambda_4 = 0.913167 \times 10^{-10} \text{ m}$	
Ws = 2.959605 x 1015 Hz	Us	= 0.796	521 x 10°	m/s	$\lambda_5 = 1.691 \times 10^{-10} \text{ m}$	
$W_6 = 2.506966 \times 10^{15} Hz$	Ue	= 0.777	555 x 10°	m/s	$\lambda_6 = 1.948779 \times 10^{-10} \text{ m}$	
$W_7 = 5.556813 \times 10^{10} Hz$	U7	= 1.637	'136 x 10°	m/s	$\lambda_7 = 1.851138 \times 10^{-10} \text{ m}$	
$W_8 = 3.367783 \times 10^{15} Hz$	Us	= 2.081	269 x 10°	m/s	$\lambda_{\text{B}} = 3.88297 \times 10^{-10} \text{m}$	
Circular - Frequency		=	WR	=	17.776665 x 10 ¹⁵ Hz	7
Resonance - Energy		=	ER	=	11.700615317517904 eV	ı
Resultant - Velocity		=	UR	=	6.574919 x 10 ^s m/s	ŀ
Resultant - λ		=	λ_R	=	2.323914 x 10 ⁻¹ ° m	1
Re Helical - r = AR		=	rR	=	0.3698623595 x 10 ⁻¹ ° m	1
Bands UL - Amplitude		=	ARB	=	0.184931 x 10 ⁻¹⁰ m	-
Resultant - Potential		=	V_{RP}	=	11.7005671373899 Volt	

THE ENERGY SPECTRUM

OF THE ANTIDOTE

WITH THE MINIMUM,

RATIO CANCEROUS

SIGNALS

 $A_1 = 0.066359 \times 10^{-10} \text{ m}$ $A_2 = 0.108086 \times 10^{-10} \text{ m}$ $A_3 = 0.08677 \times 10^{-10} \text{ m}$ $A_4 = 0.145335 \times 10^{-10} \text{ m}$ $A_5 = 0.269131 \times 10^{-10} \text{ m}$ $A_6 = 0.310158 \times 10^{-10} \text{ m}$ $A_7 = 0.294618 \times 10^{-10} \text{ m}$ $A_8 = 0.617994 \times 10^{-10} \text{ m}$

	Antidote		T- A.
The Antidote	2 - TATP Sa d.ATP = 4. C40C9H48H18	botager = [C9 H18 O6] + Cancerous C10H12 N5 O12 P4] : Cancerous	
Final Compound	SELF-Asse ProteIn=OC [CH2]2CHO [COOH]+Ca C40C34C34C34C2	nple=2[NPO4HO2O2]+Membrane Li- [CH2]34OC+MemPlasma=PO4 2C2HOH4CH3[CH2]34+2 ncerous.dATP=4[C10H12N5O12P4]: C2C2CCCCH68H68H48H4H4H3H2H2HHN20N2 D2O2O2OOOP16P2P	FROM PROGRAM. INTO THE MINIMUM CANCERO CELL
Needed W	=	438.99494255 x 10 ¹⁵ Hz	
Needed E	=	288.944696069661 eV	
Circular - Frequency	= W _{RAN}	= [335.41224511 x 10 ¹⁵ Hz	- 4-/-
Resonance - Energy		= 220.76861612996325 eV	The Antidote
Frequency - Antidote	= f _{ANT}	The state of the s	IS VERY-FAR
Resultant - Velocity	= U _{RAN}		FROM THE COMMON
Resultant - λ		= 0.5382832104 x 10 ⁻¹ ° m	REASONANCE
Re Helical - r = ARANT		= 0.0856704337 x 10 ⁻¹ ° m	(TUNING).
Modulated SB - Potential	= V _{SBF}	= 258.800110531825 Volt	The Antidote
SideBands AN - Potential	= V _{SBA}	= 242.84547774296 Volt	
Resultant - A - Potential	= V _{RAP}	= 223.496876396705 Volt	THE CANCEROUS
Intensity - Current	= I _C	= 4.96820033 x 10 ⁻¹⁵ Ampere	
Antidote V - Temperature	= T _{VA}	= 279.395 Kelvin	AND Sabotager
Modulated M-Field	= M _{FMOI}	= -1.192321 x 10 ⁻⁶ Tesla	is UNA BLE TO ACT
Antidote - M-Field	= M _{FANT}	= 2.044705 x 10 ⁻⁶ Tesla	CELL STAYS
Antidote - Phase - Shift	= φ _{ANT}	= 0.002981 x 10 ⁻¹⁵ Rad	CANCEROUS.
Phase - Modul. Index	= β _{MAN}	= 12.63611622721	
Bands UL - Deviation	= ΔWRES	= 93.0147290285 x 10 ¹⁵ Hz	
Bands UL - Width	= P _{BRM}	= 6.6730114021 x 10 ¹⁵ Hz	THE SIGNAL SPECT
Modulate - Factor	= m _{FAN}	= -0.172273399839722	UM FREQUENCIES
Bands UL - Amplitude	= A _{BUL}	= 0.010709 x 10 ⁻¹ ° m	ARE HALVE THE
Carrier - Power	= P _{CA}	= 0.00733942 x 10 ^{-2°} Watt	NORMALS
T. Modulated - Power	= P _{TM}	= 0.01100913 x 10 ^{-2°} Watt)
	= P _{SB}	= 0.00366971 x 10 ⁻² ° Watt	

Comparison Results

The Initial Healthy [Carrier] Compound

BREAST>TOTAL= C406N2PH14]+[N2O3H5]+[NO4H5] >>CANCER =]C4O2H15]:

C4PN2N2NO6O4O3H14H5H5

W RI = 18.355632 x 1015 Hz 12.081692436160115 eV E RI

f RI 2.921476 x 1015 Hz 17.422198 x 105 m/s U RI

A RI 5.963668 x 10⁻¹⁰ m

A RBI 0.086286 x 10^{-1°} m

V RI 12.0816426868544 Volt

V SBI 13.2898616797761 Volt

P RI 0.90088044 x 10⁻²° Watt

P RMI 1.35132066 x 10-2° Watt

P BRMI 0.45044022 x 10-2° Watt The Initial Energy-Spectrum

E-SINITIAL

Helical r RI = ARI = 0.9491472185 x 10^{-1°} m

M-Field Mri = 1.037418 x 10⁻⁶ Tesla

Tvi = 562.011 Kelvin

Ici = 0.3050416994 x 10⁻¹² Ampere

The Final Deseased [Modulated] Compound

3 - BAD CHOLESTEROL = 14.[C23 H46 O H] = CBC:C322O14H644H14

32.592824 x 1015 Hz W RF 21.45262349933096 eV E RE

5.187462 x 1015 Hz f_{RF}

7.657314 x 105 m/s U RF

A RF 1.476163 x 10⁻¹° m

A RBF 0.058735 x 10⁻¹° m

V RF = 21.4525351629385 Volt

V SRF 23.5978858492641 Volt

P RF 0.05519616 x 10-2° Watt

P RMF 0.08279424 x 10-2° Watt

P BRMF 0.02759808 x 10-2° Watt

Complementary

W_{RC} 28.47438265 x 1015 Hz E RC = 18.7417073785586 eV

fmax - UB 8.108938 x 1015 Hz

2.265986 x 1015 Hz f min - UB BIF 0.436819816628166

= m IF 0.96888124704736

AW RES = 46.830015 x 1015 Hz

V_{SBD} 20.616048338976 Volt

AW BAN 0 x 1015 Hz

P TBW 0.11039232 x 10-20 Watt . The Final Energy-Spectrum. E-S FINAL

Helical r RF = ARF = 0.2349386367 x 10^{-1°} m

M-Field MFF = 0.178347 x 10⁻⁶ Tesla

T_{VF} = 2,232.77 Kelvin

0.010525635 x 10⁻¹² Ampere ICF =

The Needed Energy-Spectrum. -E-SDEMOD.

Ni = 11 NF = 4

Icc =

M-Field MFN = -1.718142 x 10-6 Tesla

1.60640377 x 10⁻¹⁴ Ampere

The Healthy [Demodulated] Final Equilibrate

W RC + 46.83001515 x 1015 Hz W RI E RC + E RI 30.8233998147187 eV

The Antidote	1 -SYMEWN ABRAHANE = 4.[C47 H51 N O14] : C ₁₈₈ H ₂₀₄ N ₄ O ₅₆						The Antidot		
	3 - BAD CHOLESTEROL = 14.[C23 H46 O H] =								Was Defecte
Final Compound	CBC: C322C			JL = 14	4.[623	H40	O H] =		From -PROGR
Needed W		,						- 1-	For the Be
	-		46.830						Choleste will
Needed E	=		thinese in	339981	12.	(A.R. 3)			
Circular - Frequency	= W _{RAN}	=	47.079	06594	x 101	Hz			
Resonance - Energy	= E _{RAN}	=	30.987	47999	49550	84 eV	1		
Frequency - Antidote	= f _{ANT}	=	7.4930)87050	2 x 10	15 Hz			The Absolu
Resultant - Velocity	= U _{RAN}	r =	5.1801	48 x 1	0° m/s				Resonance is
Resultant - λ	$=$ λ_{RAN}	r =	0.6913	323658	4 x 10	-1° m			Succeeded.
Re Helical - r = ARANT	= r _{RAN}	r =	0.1100	27577	5 x 10	-1° m			with 4-Abro
Modulated SB - Potential	= V _{SBF}	=	18.741	78495	21682	Volt			
SideBands AN - Potential	= V _{SBA}	=	34.086	22799	44506	Volt			
Resultant - A - Potential	= V _{RAP}	=	31.370	42351	25559	Volt		T	he Antidote
Intensity - Current	= I _c	=	6.7717	9710 :	x 10 ⁻¹⁵	Ampe	re		3AD-CHOLESTER
Antidote V - Temperature	= T _{VA}	=	35.572	Kelvi	n			1	1s an Altered
Modulated M-Field	= M _{FMOI}	5 =	-1.718	142 x	10-6 T∈	sla		-	Drug Jor.
Antidote - M-Field	= M _{FANT}	=	0.7046	35 x 1	0-6 Te	sla			Chemotherap
Antidote - Phase - Shift	= φ _{ANT}	=	0.0212	41 x 1	0 ⁻¹⁵ Ra	ad			By to
Phase - Modul. Index	= β _{MAN}	r =	0.1805	39574	11365	6			Breast-Cane
Bands UL - Deviation	= ΔWRES	; =	14.486	24211	22 x 1	015 Hz			Detected
Bands UL - Width	= P _{BRM}	=	1.8732	71762	6 x 10	15 Hz			From Program
Modulate - Factor	= m _{FAN}	=	0.3951						Consolinat
Bands UL - Amplitude	= A _{BUL}	=	0.0275	10-20 F				A	Conclusion. entidote (S-Abr enters the Bray
Carrier - Power	= P _{CA}		0.0121	CONTRACTOR OF THE PARTY OF THE	DO NAME	Watt		A	mlido le (5-Abr
T. Modulated - Power	= P _{TM}		0.0181					7	neurus cells Sy
SideBands - Power	= P _{SB}		0.0060			10000			
he Demodulated FM - Wave	eform		Ы			ACCESSION OF			through the Bla
		57	Ξ_{l}					П	he Antidotes Si
		5						-	alling mimies
(-) The AEVS S	pectrum	2677	HA #	The	AEV	50	ECTA		Veurotransmit
		12	3 6					200	end so a clows 7
		6	K					10.00	heirattachon
		3	>						nd activate f
						de Tra	100	100	zain-newzus c

The Antidote	2 -SYMEWN N3 O26] : 0		LOOD ANTIDOTE = 2,99.[C37 H59 H ₁₇₉ N ₃ O ₇₉	The Antidote
Final Compound	3 - BAD CH CBC: C ₃₂₂ O		ESTEROL = 14.[C23 H46 O H] = 644H14	From Prigram
Needed W	=	-	46.83001515 x 10 ¹⁵ Hz	For the BAD
Needed E	=		30.8233998147187 eV	Holesterol.
Circular - Frequency			46.54783199 x 10 ¹⁵ Hz	
Resonance - Energy	- RAN		Control Contro	
Frequency - Antidote	= E _{RAN}			
	= f _{ANT}	=	7.408536048 x 10 ¹⁵ Hz	4. 0.4
Resultant - Velocity	= U _{RANT}		5.809106 x 10 ⁵ m/s	The Absolute
Resultant - λ		-	0.784109801 x 10 ⁻¹ ° m	Resonance is
Re Helical - r = Arant	= r _{RANT}	=	0.1247949508 x 10 ⁻¹ ° m	Succeeded
Modulated SB - Potential	= V _{SBF}	=		with 2,99 9BA
SideBands AN - Potential	= V _{SBA}	=	33.7016035107787 Volt	For Common.
Resultant - A - Potential	= V _{RAP}	=	31.0164438070852 Volt	Tuning
Intensity - Current	= I _C	=	8.71153855 x 10 ⁻¹⁵ Ampere	4.
Antidote V - Temperature	= T _{VA}	=	42.620 Kelvin	
Modulated M-Field	= M _{FMOD}	=	-1.718142 x 10 ⁻⁶ Tesla	The Antidote
Antidote - M-Field	= M _{FANT}	=	0.84503 x 10 ⁻⁶ Tesla	LOE BAD-CHOLESTERO
Antidote - Phase - Shift	= φ _{ANT}	=	0.021483 x 10 ⁻¹⁵ Rad	Vis an Aftered
Phase - Modul. Index	= β _{MAN1}	=	0.223224331842879	Drag detected
Bands UL - Deviation	= ΔWRES	=	13.9550081654 x 10 ¹⁵ Hz	from Program
Bands UL - Width	= P _{BRM}	=	1.852134012 x 10 ¹⁵ Hz	Used for the
Modulate - Factor	= m _{FAN}	=	0.388276930728763	Breast - Cancer
Bands UL - Amplitude	= A _{BUL}	=	0.031199 x 10 ⁻¹ ° m	Chemotherapy
Carrier - Power	= P _{CA}	=	0.01557377 x 10 ^{-2°} Watt	Conclusion
T. Modulated - Power	= P _{TM}	=	0.02336066 x 10 ⁻² ° Watt	Antidote.
SideBands - Power	= P _{SB}		0.00778688 x 10 ^{-2°} Watt	
he Demodulated FM - Wave	Pari Da	ī		(2-SYMEWN)
	eform 2	-		Enters the Brain
The 2-Symen	3	- 1	The z-Symewn	neurus Cell System
(-) AEVS Spec			(+) AEVS Spectrum	through the Blood
	25		C) a pp	Antidotes Signa llin
	3			mimies that of
				Natural Neuro-
	1			transmitters and
				so allows to its
				activate the Bea
			N	negruss-cells

The Antidote	4 - CHEMOTHERAPY EU-GISPLATIN = 55.[N2 Pt Cl2 H6] Cl122 : N ₁₁₁ Pt ₅₅ Cl ₁₂₂ H ₃₃₀	The Antidote
Final Compound	3 - BAD CHOLESTEROL = 14.[C23 H46 O H] = CBC: C322O14H644H14	From Google
Needed W	= 46.83001515 x 10 ¹⁵ Hz	For the BAP.
Needed E	= 30.8233998147187 eV	. Cholesterol.
Circular - Frequency	= W _{RAN} = 146.83058756 x 10 ¹⁵ Hz	
Resonance - Energy	= E _{RAN} = 30.823931319613056 eV	
Frequency - Antidote	= f _{ANT} = 7.4535393212 x 10 ¹⁵ Hz	
Resultant - Velocity	= U _{RANT} = 2.095667 x 10 ⁵ m/s	The Absolute
Resultant - λ	= λ_{RANT} = 0.2811640398 x 10 ⁻¹ ° m	lesonomice is
Re Helical - r = ARANT	= r _{RANT} = 0.0447486468 x 10 ⁻¹ ° m	succeeded
Modulated SB - Potential	= V _{SBF} = 18.7417849521682 Volt	with 55 Pose
SideBands AN - Potential	= V _{SBA} = 33.9063244515744 Volt	with 35 pose,
Resultant - A - Potential	= V _{RAP} = 31.2048537014183 Volt	
Intensity - Current	= I _C = 1.12010993 x 10 ⁻¹⁵ Ampere	
Antidote V - Temperature	= T _{VA} = 25.880 Kelvin	
Modulated M-Field	= M _{FMOD} = -1.718142 x 10 ⁻⁶ Tesla	The Antidotel
Antidote - M-Field	= M _{FANT} = 2.227565 x 10 ⁻⁶ Tesla	BAD-HOLESTEROL
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.021354 x 10 ⁻¹⁵ Rad	detected from
Phase - Modul. Index	$=$ $\beta_{MANT} = 0.431556022361793$	GOOGLE for EU.
Bands UL - Deviation	= ΔWRES = 14.2377637308 x 10 ¹⁵ Hz	GISPLATIN, Breest
Bands UL - Width	= P _{BRM} = 1.8633848303 x 10 ¹⁵ Hz	Camer
Modulate - Factor	$=$ m_{FAN} = 0.39197041636229	Chemotherapy
Bands UL - Amplitude	= A _{BUL} = 0.011187 x 10 ⁻¹ ° m	- motherapy.
Carrier - Power	= P _{CA} = 0.00200244 x 10 ^{-2°} Watt	
T. Modulated - Power	= P _{TM} = 0.00300366 x 10 ⁻² ° Watt	
SideBands - Power	= P _{SB} = 0.00100122 x 10 ⁻² ° Watt	
he Demodulated FM - Wave	eform χ	
EU-Gisplatin G) AEVS Spect	Eu-Gisplostin trum of (+) AEVS Spectrum 3	
	3	

Comparison Results

The Initial Healthy [Carrier] Compound

BREAST>TOTAL= C4O6N2PH14]+[N2O3H5]+[NO4H5] >>CANCER =]C4O2H15]:

C4PN2N2NO6O4O3H14H5H5

W RI = 18.355632 x 1015 Hz E RI 12.081692436160115 eV

f RI 2.921476 x 1015 Hz U RI 17.422198 x 105 m/s

λ RI 5.963668 x 10⁻¹⁰ m

A RBI 0.086286 x 10⁻¹⁰ m

V_{RI} 12.0816426868544 Volt

V SBI 13.2898616797761 Volt P RI

0.90088044 x 10-20 Watt P RMI 1.35132066 x 10-2° Watt

P BRMI 0.45044022 x 10-2° Watt

Helical rRI = ARI = 0.9491472185 x 10⁻¹⁰ m

M-Field Mri = 1.037418 x 10-6 Tesla Tvi = 562.011 Kelvin

Ici = 0.3050416994 x 10⁻¹² Ampere

The Final Deseased [Modulated] Compound

CANNABINOID BREAST-CANCER =] C4 O2 H15] :C4O2H15

W RE 3.985886 x 1015 Hz E RF 2.6235132773384597 eV

f RF 0.634392 x 1015 Hz

U RF 3.310333 x 105 m/s

A RF 5.218272 x 10⁻¹⁰ m

A RBF 0.276838 x 10⁻¹° m V RF

2.62350247438476 Volt V SBF = 2.88586460507231 Volt

P RF = 0.68975324 x 10-2° Watt

P RMF = 1.03462986 x 10-2° Watt

P BRMF 0.34487662 x 10-2° Watt

Complementary

W RC 28.73949352 x 1015 Hz E RC 18.9162021290803 eV

f max - UB 3.555868 x 1015 Hz f min - UB -2.287084 x 1015 Hz BIF = 3.60515772514668

m IF 0.484103826272234

AW RES -10.383861 x 1015 Hz

V_{SBD} -20.8079941494076 Volt ΔW BAN 0 x 1015 Hz

P TBW 1.37950649 x 10-2° Watt The Final Energy-Spectrum E-SFINAL

Helical r RF = ARF = 0.8305138446 x 10⁻¹° m

M-Field MFF = 2.845454 x 10-6 Tesla

Tyr = 414.41 Kelvin

ICF = 1.0755492831 x 10⁻¹² Ampere

The Needed Energy-Spectrum.

NI = 11 NF = 3

M-Field MFN = 3.616073 x 10-6 Tesla

Icc = -1.9889084 x 10⁻¹³ Ampere

The Healthy [Demodulated] Final Equilibrate

W RC + W RI 47.09512602 x 1015 Hz E RC + E RI 30.9978945652404 eV

Compound		
Description	SYMEWN - PRALSETINIB- AN	The 29-Dose of Hemotherapy
Formula	C783H928F29N261O58	Antidote Pralsetinb-NEW
Total Number of Elements	2059	allows the continuous
Stiffness Factor	25056	feeding of Doug to Conceruss
Droportios		CELLS

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	783	С	12	9396	3132	3132		
2	261	N	14	3654	783	783		ľ
3	928	Н	1	928	928	928		
4	58	0	16	928	116	116		
5	29	F	19	551	29	29		

Bond - Mode

313	783	928	116	29 =	400
C ²	N	Н	0	F	T 8
313 2	783	928	116	29	498 8

The z-only elements groups Act separately each other with strong frequencies WR+W2-3

Matrices

Mass Matrix

Stiffness Matrix

k ×
$$\begin{vmatrix} 3915-783 & 0 & 0 & 0 \\ -7831711-928 & 0 & 0 \\ 0 & -9281044-116 & 0 \\ 0 & 0 & -116145 & -29 \\ 0 & 0 & 0 & -29 & 29 \end{vmatrix}$$

Flexibility Matrix

Antidate (Daug Pralsetinib NEW) is steady
Acting on the Modulated-Cancerus-System
By Increasing Or Decreasing the following:

1. From Voltage Transformers Chemical
Bynthesis Vy1...2; - V MA. 2A increases
the flow of Energy more than 20 times.

2... The high Modulated Power Pre=1,03.10 in
Decreases to 0,0018593.10 wattor.

5.4 times less Power.

3... From the 11 Groups of Elements
Decreases to 4 Group Elements or
from WR=12,35,10 to WR4=74,49,10 to
mad Increases from f=0,614.10 into 11,85,10 to
A... By increasing the Temperature
from 414 Kelvin to 5091 Kelvin or
12 times more the Antidate Activates
its Resonance from its frequencies.
By coupling to the Signalling
Modulated Concerous System To
the continuous Jeeding of Drug.

Modes Dynamic - Results

λ ₁ = 0.20583193 nm	W ₁ = 101.605252 x 10 ¹⁵ Hz	f ₁ = 16.170978 x 10 ¹⁵ Hz	E ₁ = 66.87666072 eV
λ ₂ = 1.01927341 nm	W ₂ = 22.829541 x 10 ¹⁵ Hz	f ₂ = 3.633434 x 10 ¹⁵ Hz	E ₂ = 15.02642286 eV
$\lambda_3 = 1.00263037 \text{ nm}$	W ₃ = 25.059085 x 10 ¹⁵ Hz	f ₃ = 3.988277 x 10 ¹⁵ Hz	E ₃ = 16.4939105 eV
$\lambda_4 = 1.03926112 \text{ nm}$	W ₄ = 8.702185 x 10 ¹⁵ Hz	f ₄ = 1.384996 x 10 ¹⁵ Hz	E ₄ = 5.72778525 eV
$\lambda_5 = 1.059408 \text{ nm}$	$W_5 = 4.309521 \times 10^{15} Hz$	$f_5 = 0.685882 \times 10^{15} \text{ Hz}$	E ₅ = 2.83653044 eV

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

W ₁ = 101.605252 x 10 ¹⁵ Hz	U ₁ = 0.500	0356 x 10°	m/s	$\lambda_1 = 0.030942 \times 10^{-10} \text{ m}$	A ₁ = 0.004925 x 10 ⁻¹⁰ m
W ₂ = 22.829541 x 10 ¹⁵ Hz	$U_2 = 0.380$	0327 x 10°	m/s	$\lambda_2 = 0.104674 \times 10^{-10} \text{ m}$	A ₂ = 0.016659 x 10 ⁻¹ ° m
W ₃ = 25.059085 x 10 ¹⁵ Hz	U ₃ = 0.790	0681 x 10 ^s	m/s	$\lambda_a = 0.198251 \times 10^{-10} \text{ m}$	A _a = 0.031553 x 10 ⁻¹⁰ m
W ₄ = 8.702185 x 10 ¹⁵ Hz	U ₄ = 0.465	5943 x 10°	m/s	$\lambda_4 = 0.336422 \times 10^{-10} \text{ m}$	A ₄ = 0.053543 x 10 ⁻¹⁰ m
W ₅ = 4.309521 x 10 ¹⁵ Hz	Us = 0.425	5531 x 10°	m/s	$\lambda_s = 0.620415 \times 10^{-10} \text{ m}$	As = 0.098742 x 10 ⁻¹⁰ m
Circular - Frequency	=	W_R	=	81.252792 x 10 ¹⁵ Hz	
Resonance - Energy	=	ER	=	53.48065487916995 eV	7000
Resultant - Velocity	=	UR	=	2.860645 x 10 ^s m/s	The Energy-Spectrum
Resultant - λ	=	λ_{R}	=	0.22121 x 10 ⁻¹ ° m	of Symewy Productinity
Re Helical - r = AR	=	rR	=	0.0352067331 x 10 ⁻¹ ° m	Antidote for the
Bands UL - Amplitude	=	ARB	=	0.017603 x 10 ⁻¹⁰ m	Concerous Chemother
Resultant - Potential	=	V_{RP}	=	53.4804346595722 Volt	
SideBand - Potential	=	V_{SB}	=	58.8287203670869 Volt	The NEW frequency
Intensity - Current	=	Ic	=	6.32096E-05 x 10 ⁻¹² Ampe	1 2 2 5
Vaporation -Temperatur	e =	Τv	=	4,445.900 Kelvin	from -1,68.1015Hz
Magnetic - Field	=	MF	=	0.470993 x 10 ⁻⁶ Tesla	
Carrier - Power	=	PCR	=	0.00123951 x 10 ^{-2°} Watt	Jto. 9,298,1015Hz
T.Modulated - Power	=	PTRM	=	0.00185927 x 10 ^{-2°} Watt	according to the
SideBands - Power	=	P _{SBM}	=	0.00061975 x 10 ⁻² ° Watt	coupling.
$\sigma_1 = U_1/\phi$		= 0.	30923	7 x 10 ⁵ N/mm ²	4

Δ w₁ = -20.35246 x 10¹⁵ Hz W R - W1 Σ w₁ = 182.858045 x 10¹⁵ Hz W R + W1 $= \Delta W_1/2\pi$ = -3.239195 x 10¹⁵ Hz fw₁ E dF1 = -13.39600584 eV h x fw₁ k, = $\Delta W_1 / \Sigma W_1$ = -0.111301966 β, W_R/W₁ = 0.799690868 φ, = 1/W₁ 0.009842 x 10⁻¹⁵ Rad = 0,5 * A₁² 0.0000 x 10-2° Watt

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

= U₂/ Ø σ_2 Δ W₂ W R - W2 Σ_{W2} W R + W2 $= \Delta W_2/2\pi$ fw₂ E dF2 h x fw₂ k, = $\Delta W_2 / \Sigma W_2$

0.235055 x 105 N/mm2 = 58.423251 x 10¹⁵ Hz = 104.082334 x 1015 Hz = 9.298349 x 1015 Hz 38.45423202 eV 0.561317652

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

		: C783H928F29N261O58	The Antidote				
CANNABI		The Antidote H32 F N9 O2]: C ₇₈₃ H ₉₂₈ F ₂₉ N ₂₆₁ O ₅₈					
nd CANNABINOID BREAST-CANCER =] C4 O2 H15] : C4O2H15							
=	ſ	47.09512602 x 10 ¹⁵ Hz	For.				
=		30.9978945652404 eV	Cannabinoid				
= W _{RA}	N =	47.33289204 x 10 ¹⁵ Hz	Breat-Conce				
= E _{RA}	N =	31.154548542376062 eV					
= f _{AN}	т =	7.53348592 x 10 ¹⁵ Hz					
= U _{RA}	NT =	2.196819 x 10 ⁵ m/s	The Absolute				
= λ _{RA}	NT =	0.2916072856 x 10 ^{-1°} m	Resonance is				
= r _{RA}	NT =	0.0464107409 x 10 ⁻¹ ° m	Succeeded.				
= V _{SB}	=	-18.9162804249393 Volt	with 29-Dose				
= V _{SB}	A =	34.2700033966137 Volt	For the fest				
= V _{RA}	p =	31.539556694379 Volt	Tuning.				
= I _C	=	7.38918001 x 10 ⁻¹⁵ Ampere	1				
= T _{VA}	=	6.281 Kelvin					
= M _{FM}	oD =	3.616073 x 10 ⁻⁶ Tesla	The Antidote for				
= M _{FAI}	T =	0.361697 x 10 ⁻⁶ Tesla	Cannobinoid Bre				
= φ _{AN}	r =	0.021127 x 10 ⁻¹⁵ Rad	CANCER is an				
= β _{MA}	NT =	0.950943183854909	aftered DRUG				
= ΔWR	ES =	43.3470062973 x 10 ¹⁵ Hz	detected from				
= P _{BR}	м =	1.506697184 x 10 ¹⁵ Hz	PROGRAM forth				
= m _{FAI}	. =	0.392821940850355	small-cell				
= A _{BUI}	=	0.009282 x 10 ⁻¹ ° m	Lung - Cance				
= P _{CA}	=	0.00215395 x 10 ⁻² ° Watt	Conclusion.				
= P _{TM}	=	0.00323093 x 10 ^{-2°} Watt	Antidote 5-Propse				
= P _{SB}	=	0.00107697 x 10 ⁻²⁰ Watt	Enters the BREAS-				
			neurus Cell-Syte				
West 18 6.10	4	The Symewn. (+) AEVS Spectzum	Antidotes Signall minies that of Local-Neurotrans and so, the Allows to its after onto and activate				
	= W _{RA} = E _{RA} = f _{AN} = U _{RA} = ν _{SB} = ν _{SB} = ν _{SB} = ν _{SB} = ν _{RA} = η _C	= W _{RAN} = E _{RAN} = E _{RAN} = F _{ANT} = U _{RANT} = V _{SBF} = V _{SBA} = V _{RAP} = U _C = T _{VA} = M _{FMOD} = M _{FANT} = M _{FAN} =	= W _{RAN} = 47.33289204 x 10 ¹⁵ Hz = E _{RAN} = 31.154548542376062 eV = f _{ANT} = 7.53348592 x 10 ¹⁵ Hz = U _{RANT} = 2.196819 x 10 ⁵ m/s = λ _{RANT} = 0.2916072856 x 10 ⁻¹⁰ m = r _{RANT} = 0.0464107409 x 10 ⁻¹⁰ m = V _{SBF} = -18.9162804249393 Volt = V _{SBA} = 34.2700033966137 Volt = V _{RAP} = 31.539556694379 Volt = I _C = 7.38918001 x 10 ⁻¹⁵ Ampere = T _{VA} = 6.281 Kelvin = M _{FMOD} = 3.616073 x 10 ⁻⁶ Tesla = M _{FANT} = 0.021127 x 10 ⁻¹⁵ Rad = M _{ANT} = 0.021127 x 10 ⁻¹⁵ Rad = β _{MANT} = 0.950943183854909 = ΔWRES = 43.3470062973 x 10 ¹⁵ Hz = P _{BRM} = 1.506697184 x 10 ¹⁵ Hz = m _{FAN} = 0.392821940850355 = A _{BUL} = 0.009282 x 10 ⁻¹⁰ m = P _{CA} = 0.00215395 x 10 ⁻²⁰ Watt = P _{SB} = 0.00107697 x 10 ⁻²⁰ Watt				

The Antidote	CHEMOTHI] : C989H1219		The Antidote was Defected	
Final Compound	CANNABIN C ₄ O ₂ H ₁₅	OID	From Google	
Needed W	=	-	47.09512602 x 10 ¹⁵ Hz	13 For Chemo
Needed E	=		30.9978945652404 eV	therapy of.
Circular - Frequency	= W _{RAN}	=	47.05137354 x 10 ¹⁵ Hz	Cannabinoid.
Resonance - Energy	= E _{RAN}	=	30.96925283720412 eV	Breagt-Concer
Frequency - Antidote	= f _{ANT}	=	7.4886795385 x 10 ¹⁵ Hz	Dreed (-Cerice)
Resultant - Velocity	= U _{RAN}	r =	2.274112 x 10 ⁵ m/s	The Efficience
Resultant - λ	= λ _{RAN}	r =	0.3036732908 x 10 ⁻¹ ° m	is the neede
Re Helical - r = ARANT	= r _{RAN}	-	0.0483311053 x 10 ⁻¹ ° m	Fora Short
Modulated SB - Potential	= V _{SBF}	=	-18.9162804249393 Volt	
SideBands AN - Potential	= V _{SBA}	=	34.0661781209245 Volt	Therapy.
Resultant - A - Potential	= V _{RAP}	=	31.3519711034484 Volt	15 The 23-Dose
Intensity - Current	= I _C	=	8.01332391 x 10 ⁻¹⁵ Ampere	The Antidote
Antidote V - Temperature	= T _{VA}	=	6.917 Kelvin	Joz Comnabinoid
Modulated M-Field	= M _{FMO}	_D =	3.616073 x 10 ⁻⁶ Tesla	Breast-Cancer
Antidote - M-Field	= M _{FAN}	=	0.319171 x 10 ⁻⁶ Tesla	is a DRUG
Antidote - Phase - Shift	= φ _{ANT}	=	0.021253 x 10 ⁻¹⁵ Rad	from Goodie
Phase - Modul. Index	= β _{MAN}	T =	0.972296060370754	to treat the
Bands UL - Deviation	= ΔWRE	s =	43.0654878027 x 10 ¹⁵ Hz	Advanced 02
Bands UL - Width	= P _{BRM}	=	1.8721698846 x 10 ¹⁵ Hz	Metastatic
Modulate - Factor	= m _{FAN}	=	0.38918906384081	Spread Breezi
Bands UL - Amplitude	= A _{BUL}	=	0.012083 x 10 ⁻¹ ° m	Comcer.
Carrier - Power	= P _{CA}	=	0.00233589 x 10 ^{-2°} Watt	The Program
T. Modulated - Power	= P _{TM}	=	0.00350384 x 10 ^{-2°} Watt	Cheeks and Fine
SideBands - Power	= P _{SB}	=	0.00116794 x 10 ⁻² ° Watt	VERY-EFFICIENC

Antidotes

(-) AEVS Spectrum

(+) AEVS Spectrum

(+) AEVS Spectrum

Compound

CHEMOTHERAPY EU - Gisplatin1 = 218.[N2 Pt Cl2 H6] Description Formula N436Pt218Cl436H1308

The 218-Dose Hemotheropy

Total Number of Elements 2398

Antidote, allows

Stiffness Factor

1308

Continuous Jeeding of Drug Against the Comercus Ceeps

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	218	Pt	195	42510	218	218		
2	436	CI	35	15260	436	436	(
3	436	N	14	6104	1308	1308	K	
4	1308	Н	1	1308	1308	1308	V	

Bond - Mode

he o-elements Groups is to Act separately by Increasing the Dose only

Matrices

Mass Matrix

Stiffness Matrix

The Antidote (Deug Eu-Gisplatin) is a steady and Continously acting on the MODULATED CANCEROUS - SYSTEM. By Increasing or

Decreasing the followings Transformers Chemical VMI - ZMI = VA - ZA Increases flow Energy from 2,62,1,07=2,80,10 12A

0.30,014.4,633 = 140855,10-12 A more than 50 fi high Modulotted Power PRY = 1,0340,10-20 W Decreases to 0,000 +7.10-20 W or 1370 fines

3. From the 11 Groups of elements Decreases 4 Groups Reements , and or from. Frequency WM = 3,985, 1015HZ to that.

increases to WANT = 45,600.1013HZ

by coupling to the Cancerous Signalling System Hers By Increasing the Temperature from

414 Kelvin to 3116 Kelvin 02 753 fimes more, The Antidote Activate its

Resonance to the Signalling and

Concerny System to the sontinous feeding of

5 == From recrition Le = (1) = 480,9172.10 -24 and by

L=10-19 H then C= (1) = 480,9178.10 - 5 Farad.

× 982.8901734 kg

Flexibility Matrix

130

Common Mass M =

m

982.8901734 kg

capable at the circuit's Resonance frequency.

Ciment				101		45 000 155)	
		requency	=	WR	=	45.600436 x 10	STATE OF	The Energy Spectrus
		- Energy	=	ER	=	30.0142448563	HOLING CONTRACTOR	1 5 6 6
		Velocity	=	UR	=	1.036393 x 10 ⁵		of the System.
Resulta			= =	λ_R	=	0.142802 x 10	¹° m	EU- Gisplatin Antidote
		r = AR	=	r _R	=	0.0227277003	x 10 ⁻¹⁰ m	for the Concerous
		Amplitude	=	A_{RB}	=	0.011364 x 10	¹° m	7
Resulta	nt -	Potential	=	V_{RP}	=	30.0141212653	399 Volt	Chemotherapy
SideBa	nd -	Potential	=	V _{SB}	=	33.0156693419	9837 Volt	- L
Intensit	y - (Current	=	Ic	=	4.69367E-05 x	10 ⁻¹² Ampe	ere The System of
Vapora	tion	-Temperature	=	Τv	=	3,116.527 Kelv	vin	frequencies véries
Magnet	ic - F	Field	=	MF	=	1.112918 x 10	⁶ Tesla	at high levels
Carrier	- Po	wer	=	PCR	=	0.00051654 x 1	10 ⁻²⁰ Watt	
T.Modu	late	d - Power	=	P_{TRM}	Ē	0.00077482 x 1	10 ⁻²⁰ Watt	Letween 60-75,10'SHZ
SideBa	nds	- Power	=	P_{SBM}	Ē	0.00025827 x 1	10 ^{-2°} Watt	
22	-	top serve		- 0	255000	207 117 9	/	
σ1		υ./ φ				x 10 ⁵ N/mm ² 9 x 10 ¹⁵ Hz	min Ar	marketiska kilosofiska
Δ w ₁ Σ w ₁	=	W R - W1				9 x 10 ⁻⁵ Hz 4 x 10 ¹⁵ Hz		mplitude Modulation mplitude Modulation
	=	W _R + W ₁ ΔW ₁ /2π				x 10 ⁻⁵ Hz		requency Modulation
fw ₁ E dF ₁	=	h x fw ₁			0.432915		COILT	equency Modulation
k ,	=	Π X IW1 ΔW , / ΣW1			.5160403			
β ,	=	W _R / W ₁			.1325762			
φ,	=	1/W ₁				x 10 ⁻¹⁵ Rad		
Ρ,	=	0,5 * A ₁ ²				x 10 ⁻² Rad 10 ⁻² Watt		
ACCHOSTO:	180			5001	0000 .	U · Watt		
σ2	=	υ2/ φ				x 10 ⁵ N/mm ²		
Δ W ₂	=	W _R -W ₂				8 x 10 ¹⁵ Hz		mplitude Modulation
Σ _{W2}	=	W R + W2				5 x 10 ¹⁵ Hz		implitude Modulation
fw ₂	=	ΔW ₂ / 2π				x 10 ¹⁵ Hz	con.Fr	equency Modulation
E dF ₂	=	h x fw ₂			8.728043			200
k ₂	=	Δw ₂ / Σw ₂			.4534586			
β 2	=	W _R /W ₂			.6593752			
φ 2	=	1 / W ₂				x 10 ⁻¹⁵ Rad		
P ₂	=	0,5 * A ₂ ²		= 0.	0000 x 1	10 ^{-2°} Watt		
σз	=	U ₃ / φ		= 0.	.207493	x 10 ⁵ N/mm ²		
Δ _{Wa}	=	W R - W3		= 15	5.882835	5 x 10 ¹⁵ Hz	min.Ar	mplitude Modulation
Σ _{W3}	=	W _R + W ₃		= 75	5.318038	3 x 10 ¹⁵ Hz	max.A	implitude Modulation
fwз	=	ΔW ₃ / 2π		= 2.	527832	x 10 ¹⁵ Hz	con.Fr	equency Modulation
E dFa	=	h x fw ₃		= 10	0.454095	528 eV		
k,	=	Δw_3 / Σw_3		= 0.	.2108769	113		
β,	=	W _R /W ₃		= 1.	.5344588	362		
φ ,	=	1 / W ₃		= 0.	.03365 x	10 ⁻¹⁵ Rad		
Р,	=	0,5 * A ₃ ²		= 0.	.0000 x 1	10⁻²° Watt		
σ.	=	υ4/ φ		= 0.	449703	x 10 ⁵ N/mm ²		
σ ₄ Δ _{W4}	=	W R - W4				x 10° N/mm² 1 x 10° Hz	min.Ar	mplitude Modulation
Σ ₩4	=	W R + W ₄				2 x 10 ¹⁵ Hz		implitude Modulation
- 114		VV R T VV4					THOM:	mpitado modalation

Antidote - Action

The Antidote	CHEMOTHERAPY EU - Gisplatin1 = 218.[N2 Pt Cl H6] : N436Pt218Cl436H1308	2 The Antido
Final Compound	CANNABINOID BREAST-CANCER =] C4 O2 H15] C4O2H15	
Needed W	= 47.09512602 x 10 ¹⁵ Hz	¥ 15
or Wall world		For Chemother
Needed E	= 30.9978945652404 eV	of the Brea
Circular - Frequency	= W _{RAN} = 47.10212078 x 10 ¹⁵ Hz	Comcer.
Resonance - Energy	= E _{RAN} = 31.002654711805672 eV	
Frequency - Antidote	$= f_{ANT} = 7.4967564507 \times 10^{15} Hz$	
Resultant - Velocity	= U _{RANT} = 1.05981 x 10 ⁵ m/s	
Resultant - λ	= λ_{RANT} = 0.1413691925 x 10 ^{-1°} m	The Absolut
Re Helical - r = ARANT	= \mathbf{r}_{RANT} = 0.0224996058 x 10 ^{-1°} m	Resonance 1
Modulated SB - Potential	= V _{SBF} = -18.9162804249393 Volt	succeeded wit
SideBands AN - Potential	= V _{SBA} = 34.1029201829862 Volt	218 Bisplati
Resultant - A - Potential	= V _{RAP} = 31.3857857586748 Volt	Chemical Con
ntensity - Current	= I_C = 1.73663704 x 10 ⁻¹⁵ Ampere	1
Antidote V - Temperature	= T _{VA} = 6.708 Kelvin	The Progress
Modulated M-Field	= M _{FMOD} = 3.616073 x 10 ⁻⁶ Tesla	1. Analyses
Antidote - M-Field	= M _{FANT} = 1.138065 x 10 ⁻⁶ Tesla	2. Modulates
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.02123 x 10 ⁻¹⁵ Rad	3. Demodula
Phase - Modul. Index	$=$ $\beta_{MANT} = 0.912588483692218$	4. Detects the
Bands UL - Deviation	= ΔWRES = 43.1162350418 x 10 ¹⁵ Hz	Probec Anti
Bands UL - Width	= P_{BRM} = 1.8741891127 x 10 ¹⁵ Hz	according t
Modulate - Factor	$=$ m_{FAN} = 0.389847143946675	the therapy
Bands UL - Amplitude	= A _{BUL} = 0.005625 x 10 ⁻¹ ° m	State.
Carrier - Power	= P _{CA} = 0.00050623 x 10 ^{-2°} Watt	5. Send Antic
T. Modulated - Power	= P _{TM} = 0.00075934 x 10 ⁻² ° Watt	into the Bre
SideBands - Power	= P _{SB} = 0.00025311 x 10 ⁻² Watt	neurus Cell-sy
he Demodulated FM - Wave	form # Eu-Bisplatin.	6. Mimies the
Eu-Gisplatin	el Eu-Bisplatin.	Local-Neurotro
Eu-Gisplatin	8	mitters with
(-) A EVS Specto	um 3 (+) AEVS Spectrum	Antidotes
	n si	Antidotes
	3	for the Signall
		7 Activatet
		- Resonance An
		to that of Loca

Summary: Introduction to Resonance

Structural formulae of molecules with pi bonds (multiple bonds) do not always show the **full picture** of electron density in a molecule.

 This is because there can be more than one valid way of drawing the arrangement of pi bonds in molecules. These different arrangements of pi electrons are called resonance forms and are denoted with a double sided arrow ↔

- Importantly this is not an equilibrium. They do not "interconvert" back and forth.
 It's just that the true electron density of the molecule cannot be depicted by just one line diagram.
- If this is true, then what is the "true" structure of the molecule?
 In these cases, the true structure is a hybrid of both of these resonance forms

- The bond lengths are intermediate between those of a single and a double bond, and the charge densities on the atoms are half of those of a typical ion
- Although these cases the two resonance forms are equally important, this will not always be the case. We will shortly see examples where certain resonance forms are more important than others and the hybrid is an unequal weighting of resonance forms.

Compound Description RESONANCE of the Acetate - Formula = C H2 - C H - C O 2 Formula H2HCCCO2 Total Number of Elements 8 Stiffness Factor 4 The Resonance Mode

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	2	0	16	32	4	4		L 0 (
2	1	С	12	12	4	4		D "V
3	1	С	12	12	4	4		D 4 C
4	1	С	12	12	4	4		
5	2	Н	1	2	2	2		
6	1	Н	1	1	1	1	(H H

Bond - Mode

Matrices

Mass Matrix

m x	32	0	0	0	0	0	From Athwart Energy-Vibration-Spectrus
	0	12	0	0	0	0	- W2-W3 = OHZ
	0	0	12	0	0	0 .	WZ-W4 = -0,731.10 15HZ
	0	0	0	12	0	0	W3-W4 = -0,732,1015HZ
- 4	0	0	0	0	2	0	
	0	0	0	0	0	1	The Resonance-Frequency WR=10,42110 Hz

Stiffness Matrix

Flexibility Matrix

The Resonance Frequency of Atoms Compounds is the minimum Energy which flows between the Elements.

ound consists the Mode-SHAPES of the Component Oscillating happens of the Circuits LC=(1) C=(1) C=(1) Resonance frequency; which is

Compound

Description	RESONANCE of the Allyl cation Formula =	CH2 - CH -
	CH2	7

_ [B]

Formula

CCCH₂H₂H

Total Number of Elements 8

Stiffness Factor

The Resonance MODE

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	1	C	12	12	4	4		1
2	1 1	C 2	12	12	4	4		M #
3	1	C 3	12	12	4	4	1	
4	2	Н	1	2	2	2		5 1 5
5	2 +	Н	1	2	2	2) H
6	1	Н	1	1	1	1	O)

Bond - Mode

THE ATHWART ENERGY-BONDING

Matrices

Mass Matrix

m ×	12	0	0	0	0	0	From Athwart Energy Vibration
	0	12	0	0	0	0	Spectrum and Modes
	0	0	12	0	0	0	WZ-W3 = -0,811.1015 HZ
	0	0	0	2	0	0	W4-W6 = -0,031,1015 Hz
	0	0	0	0	2	0	(1) 6 11 (
	0	0	0	0	0	1	Ws-W6 = -0,443,1015Hz
Stiffne	ss Ma	atrix					The Resonance Frequency WR=9,10,1015

Stiffness Matrix

The Resonance Frequency of Hloms

Compounds is the minimum Energy

Compounds is the minimum Energy

which flows between the Plements

and consists the MODE-SHAPES of

the Components. Oscillation happens

at the circuit's LC-(wr) C-(1

Lwr)

1 x 1 2 2 2 2 2 2

Inductance L-(wr)

[3]

THE BENZENE RESONANCE STRUCTURE

xample 44: Benzene

Benzene is a common organic solvent that was previously used in gasoline; it is no longer used for this purpose, however, because it is now known to be a carcinogen. The benzene molecule (C6H6C6H6) consists of a regular hexagon of carbon atoms, each of which is also bonded to a hydrogen atom. Use resonance structures to describe the bonding in benzene.

H_C-C

Given: molecular formula and molecular geometry, Asked for: resonance structures Strategy:

- A. Draw a structure for benzene illustrating the bonded atoms. Then calculate the number of valence electrons used in this drawing.
- B. Subtract this number from the total number of valence electrons in benzene and then locate the remaining electrons such that each atom in the structure reaches an octet.
- C. Draw the resonance structures for benzene.

Solution:

[A] Each hydrogen atom contributes 1 valence electron, and each carbon atom contributes 4 valence electrons, for a total of $(6 \times 1) + (6 \times 4) = 30$ valence electrons. If we place a single bonding electron pair between each pair of carbon atoms and between each carbon and a hydrogen atom, we obtain the following:

Each carbon atom in this structure has only 6 electrons and has a formal charge of +1, but we have used only 24 of the 30 valence electrons. [B] If the 6 remaining electrons are uniformly distributed pairwise on alternate carbon atoms, we obtain the following:

Three carbon atoms now have an octet configuration and a formal charge of -1, while three carbon atoms have only 6 electrons and a formal charge of +1. We can convert each lone pair to a bonding electron pair, which gives each atom an octet of electrons and a formal charge of 0, by making three C=C double bonds.

[C] There are, however, two ways to do this:

H C
$$=$$
 C $=$ C

THE MODE OF RESONANCE (

Each structure has alternating double and single bonds, but experimentation shows that each carbon–carbon bond in benzene is identical, with bond lengths (139.9 pm) intermediate between those typically found for a C–C single bond (154 pm) and a C=C double bond (134 pm). We can describe the bonding in benzene using the two resonance structures, but the actual electronic structure is an average of the two. The existence of multiple resonance structures for aromatic hydrocarbons like benzene is often indicated by drawing either a circle or dashed lines inside the hexagon:

ATHWART ENERGY BONDING C6HCC6HG= 20 3 C2H2 +3 C2H2 2 2.0 C202 3 20 4 20 C202 20 5 C202 Not Others 26 6 2H Inbetween Bonding 8 21 24 C202 10 24 11 214 12 24.

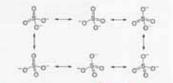
THE OZONE CHEMICAL RESONANCE STRUCTURE

out, however, that both O–O bond distances are identical, 127.2 pm, which is shorter than a typical O–O single bond (148 pm) and longer than the O=O double bond in O_2 (120.7 pm).

Equivalent Lewis dot structures, such as those of ozone, are called resonance structures. The position of the *atoms* is the same in the various resonance structures of a compound, but the position of the *electrons* is different. Double-headed arrows link the different resonance structures of a compound:

The double-headed arrow indicates that the actual electronic structure is an *average* of those shown, not that the molecule oscillates between the two structures.

When it is possible to write more than one equivalent resonance structure for a molecule or ion, the actual structure is the average of the resonance structures. The electrons appear to "shift" between different resonance structures and while not strictly correct as each resonance structure is just a limitation of using the Lewis structure perspective to describe these molecules. A more accurate description of the electron structure of the molecule requires considering multiple resonance structures simultaneously.


ATHWARD ENERGY-BONDING THE MODE OF RESONANCE

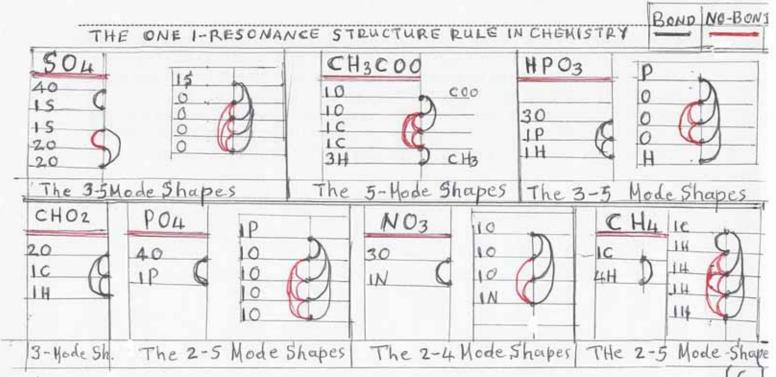
OZ	TONE	03 = 0	-0-0	03=0-0-0,03=0-0-0						
1.	0			1	0					
2,	0	02	03	2	0	0,				
3	O	0 .)	3	0	30				
				4	0	-				
T	HE OF	ZONE S.	TRUCTURE	_5	0					
1	'HE 3-	HODES -	SHAPES	6	0	03				
					THE OZONE BONDING					
				T	HE 6-1	MODES SHAPES				

RESONANCE STRUCTURES IN CHEKISTRY

Answers

[1] . False, because the electrons were not moved around, only the atoms (this violates the Resonance Structure Rules).

- [2]. Below are the all Lewis dot structure with formal charges (in red) for Sulfate (SO₄²⁻). There isn't a most favorable resonance of the Sulfate ion because they are all no change in Electronegativity between the Oxygen atoms.
 - [1] identical in charge and there is
- [3]. Below is the resonance for CH3COO formal charges are displayed in red. The Lewis Structure with the most formal charges is not desirable, because we want the Lewis Structure with the least formal charge. .

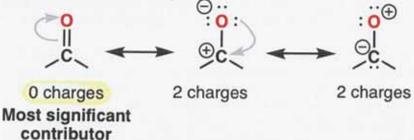

- [4]. The resonance for HPO32, and the formal charges (in red).
- [5]. The resonance for CHO₂¹⁻, and the formal charges (in red).). [5]
- CHO'

$$\begin{bmatrix} \vdots \\ \vdots \\ H-C-\ddot{\odot} \end{bmatrix} \longleftrightarrow \begin{bmatrix} \vdots \ddot{\odot} \\ H-C=\ddot{\odot} \end{bmatrix}$$

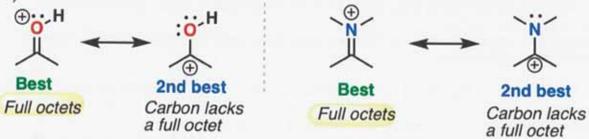
[7]. The resonance hybrid for NO3, in red.

PO3.

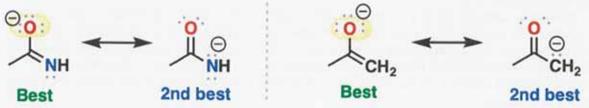
hybrid bonds are[7]



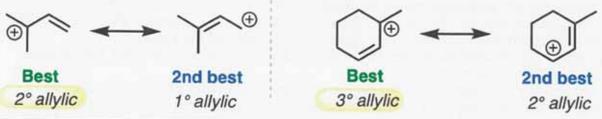
The Resonance Structures Jollow THE ONE MODE. of M-Program at XCATHWART VIBRATION SPECTRUM.


Summary: Assessing The Relative Importance of Resonance Structures

Four key rules to keep in mind: charges, octets, negative charges, positive charges


Rule 1: The fewer point charges, the better

Rule 2: The more filled octets, the better (and never, ever have empty octets on oxygen or nitrogen)


Rule 3: Place negative charges on the least basic atoms (most electronegative).

negative charge is on the least basic atom (O) vs. the most basic atom (N)

negative charge is on the least basic atom (O) vs. the most basic atom (C)

Rule 4: Positive charges should be on atoms best able to stabilize them (usually the most substituted carbon).

AMETHOD OF CONTROLLING THE BRAIN-ACTIVITY

Sedative-hypnotic drugs — sometimes called "Depressants" — and Anxiolytic (anti-anxiety) Drugs slow down the activity of the Brain. Benzodiazepines (Ativan, Halcion, Librium, Valium, Xanax, Rohypnol) are the best known.

- 1.. Benzodiazepines = Benzodiazepines | C9 H8 N2 | CID 134664
- 2.. Activan Lorazepam | C15 H10 Cl2 N2 O2 | CID 3958
- 3.. Halcion Triazolam | C17 H12 Cl2 N4 | CID 5556
- 4.. Librium Chlordiazepoxide | C16 H14 Cl N3 O | CID 2712
- 5.. Valium Diazepam | C16 H13 CI N2 O | CID 3016
- 6.. Xanax Alprazolam | C17 H13 CI N4 | CID 2118
- 7..Rohypnol Flunitrazepam | C16 H12 F N3 O3 | CID 3380

A=THE CARRIER WAVE 1. SEROTONIN [CIOOHIZN2] - Signal Neurotransmitter 2. DOPAMINE [C8 HII NOZ] - Chemical Messenger 3. GABA [C4Hq NO2] -> The Primary Inhibitory NeurotransmitteninCNS B = THE MODULATING WAVE 1. HOG-MYELIN [C80 H105 N21 Oz75] → Insulator of nerve cell axons 2. Ach [C7 HI6 NO2] -> Central Periferal Chemical messenger. 3. SOMA [CIZHZ4NZO4] - Houses The Nucleus & GENE Informations 4. 5 ARM1 [N3 03 F3 Hz] - Key component of Wallerian Degeneration 5. NMNATZ [NOH2+03H2+POAH] -> Neuroprotection, maintaining AXON and delay WI 6. SARM 2 [CIN2 O2 F3H] -> Promote muscle growth & Strongth in least effects 7. DEMPRITE [48 Elements] -> Branched Projections to received Process Signal C = A - B = THE MODULATED WAVE D = C+X = THE DEMODULATED WAVE E = ANTIDOTE = THE PROBER DEMODULATION

[8]

INTRACELLULAR PROTEIN - CALCIUM SIGNALING

The main property of Neuronal and other excitable Cells is their capability to Transform excitatory Waves into intracellular Signals, where they Trigger or Modulate practically all cellular functions .The Influx of Calcium ions from the Extracellular medium (The Calcium Signals,,) plays a Key-Role in this process.

Adenosine Monophosphate = [AMP] = | C10 H14 N5 O7 P]

Adenosine -5'-Triphosphate = [ATP] = | C10 H16 N5 O13 P3 | CID5957

National Institutes of Health (.gov)

https://pubchem.ncbi.nlm.nih.gov > compound > Aden...ATP is an adenosine 5'-phosphate in which the 5'-Phosphate is a Triphosphate group.involved in the transportation of chemical energy during metabolic ...

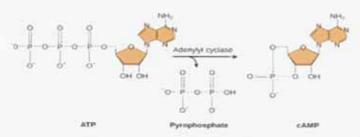


Figure 9.13 Formation of cyclic AMP (cAMP). cAMP serves as a second messenger in many cell types. Termination of the signal occurs when an enzyme called phosphodiesterase converts cAMP into AMP.

ebellum = [C O₁ F N₃ H₂] \rightarrow Axonal Remodeling [CO₁ F N₃ H₂] = 12,05.10^15Hz - 7,93.eV [AMP] = [C₁₀ H₁₄ N₅ O₇ P₁] = 5,42.10^15Hz - 3,57.eV [ATP] = [C₁₀ H₁₆ N₅ O₁₃ P₃] = 6,85.10^15Hz - 4,51.eV

Figure 1 →

THE BRAIN RECEPTORS & REGULATORS

Fig. 3 The multiple triggers of Programmed Axon Death in human disease. The NAD(P) ase and/or base exchange activity of SARM1 drives degeneration. It occurs in axons specifically when its upstream Regulator, NMNAT2, falls below a threshold level, which may occur after axon injury, NMNAT2 LoF mutation or axonal transport deficits, such as caused by some cancer chemotherapeutics targeting microtubules. SARM1 can also be activated directly by GoF mutation or some Toxins, and this can also cause Death of the soma. Some viruses also cause SARM1-dependent degeneration

Brain Receptor - SARM1 = [N3 O3 F3 H2]

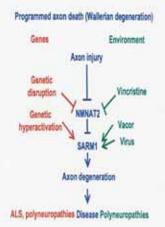
Brain Receptor – SARM2 = [C2 N2 O2 F3 H]

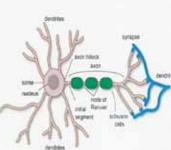
Brain Receptor - NMNAT2 = [N2OH2 + O3H2 + PO4H]

Soma = [C12 H24 N2 C4] = {7,27 / 4,79 }

Axon-Membrance-Lipids={71,69/47,32} (1)..Palmitate = [O2 O2 P O4 N] (2)..Palmitate = [H O N H O P O4 N] (3)..Palmitate = [H O N H O H5 O6]

THE ACTION PROCESS:


INITIAL STATE = Remo - $\underline{\mathsf{CEREBELLUM}}$ >>> [SOMA - AXON - DENDRITE] FINAL STATE = SOD \rightarrow [SARM1 + NMNAT2] + [SOMA- AXON - DENDRITE]


THE BRAIN - ACTIONS = DRUGS →

= N-SOD →

= INJURE →

Myelin (MEP) = C9H10O4 Vasodeloiting the Myelin (MOG) = C80H105 Nz1Oz7S) Aggea in Brain Brain Signals Between Panvier Notes Signals

The Rise of Molecules Able To Regenerate the Central Nervous System | Journal of Medicinal Chemistry

$$\begin{split} & \text{Taxol} = [\text{ N1 O14 H4 }] \text{ , Epothilone-B} = [\text{ N1 O6 H3 }] \\ & \text{Dimethyfasudil} = [\text{ N3 O2 }] \text{ , Fusicoccin-A} = [\text{ O12 H4 }] \\ & \text{CRMP4} = [\text{ C34 H47 N1 O11 }] \\ & \text{Bioactive Molecule } [\text{ GSK2798745 }] = [\text{ C25 H28 N6 O3 }] \\ & \text{Bioactive Molecule } [\text{GSK2798745 }] = [\text{ C 25 H 28 N 6 O 3 }] \\ & \text{Bioactive Molecule } [\text{10074-G5}] = [\text{ C 18 H 12 N 4 O 3 }] \\ \end{split}$$

THE BRAIN RECEPTORS & REGULATORS

Fig. 3 The multiple triggers of programmed Axon Death in human disease. The NAD(P)ase and/or base exchange activity of SARM1 drives degeneration. It occurs in axons specifically when its upstream Regulator, NMNAT2, falls below a threshold level, which may occur after axon injury, NMNAT2 LoF mutation or axonal transport deficits, such as caused by some cancer chemotherapeutics targeting microtubules. SARM1 can also be activated directly by GoF mutation or some toxins, and this can also cause death of the soma. Some viruses also cause SARM1-dependent degeneration

Brain Receptor - SARM1 = [N3 O3 F3 H2]

Brain Receptor - SARM2 = [C2 N2 O2 F3 H]

Brain Receptor - NMNAT2 = [N2OH2 + O3H2 + PO4H]

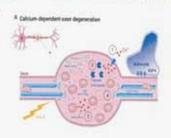
Figure 1:

Early phase of axon degeneration can appear in different forms.(A) Established programs of axon degeneration (such as Wallerian degeneration or focal acute axonal degeneration) are calcium-dependent and are finally characterized by the following sequence of events: Initial injury trigger leads to an abnormal calcium influx through mechanochannels/nanopores (1) and calcium release from internal calcium stores, such as mitochondria and axoplasmic reticulum (2). The increase in intra-axonal calcium level activates calcium-dependent calpain proteases (3) that lead to cytoskeletal breakdown and eventually cargo accumulation (4), such as mitochondria and NMNAT2. (B) Astrocytopathy-driven axonal beading has characteristics that distinguish it from the other described pathways. After the lytic depletion of astrocytes (1), a sodium influx-related osmotic challenge (2) induces remodeling of the microtubular cytoskeleton (3) in the initial state without overt cargo accumulation (4). The described processes affect both myelinated and non-myelinated axons. However, for better readability of the figure, the myelin layer has been omitted in the inset illustrations. AQP4: Aquaporin 4 channel; AR: axoplasmic reticulum; MI; mitochondria; MT; microtubules; NMNAT2; the protein nicotinamide mononucleotide adenylyltransferase 2. Created with BioRender.com.

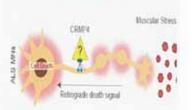
Synopsis

Identification of an intracellular mechanism that mediates Motor Neuron (MN) death in Amyotrophic Lateral Sclerosis (ALS). CRMP4 Binds the Motor Protein Dynein = [C3N3O2SH10F2] + [C3N3O2SH10F2] and Transports from distal Axons to the Soma where it Promotes MN Death. Blocking the <u>CRMP4-Dynein</u> interaction reduces MN Death in Human-derived MNs (C9orf72) and in ALS mice. CRMP4= [C34 H47 N1 O11].Protein level is altered along ALS diseased Motor unit. Dynein mediates CRMP4 mislocalization in Motor Neurons via specific CRMP4 motif.

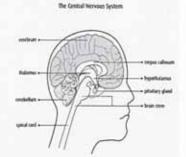
CRMP4-Dynein complexes are enhanced in ALS diseased MNs.


CRMP4-Dynein complex formation facilitates selective Neuronal loss in ALS.

Molecules Able to Regenerate the Central Nervous System


Programmed axon death (Wallerian degeneration)

ALS, polyneuropathies Disease Polyneuropathies



Parts of the Brain Involved with Memory, { Aphasia } Change that's good for the Brain

The Process of Learning something has an effect on the Brain similar to the one exercizing has on the Muscles. If we make them move, they increase in size and become stronger. The same thing happens to the Brain. By Putting it to work, we're making it alter its Structure, while at the same time improving certain functions. Because language learning is such a complex Process, the Brain regions involved in it are enhanced. This is reflected in an increase of White and Gray matter (that contains most of the Brain's Neurons and Synapses) in said regions.

Melatonin released in the Brain at night Controls the Sleep-Wake cycle in cycle Vertebrates. The Prefrontal Cortex (PFC) IT IS the Part of the Neocortex that sits at the very front of the Brain. It is the most recent addition to the mammalian Brain, and is involved in many complex Cognitive functions. Human Neuroimaging studies using (MRI) machines show that when People Perform tasks requiring them to hold Information in their Short-Term Memory, such as the location of a flash of light, the PFC becomes active. There also seems to be a functional separation between Left and Right sides of the PFC: the Left is more involved in Verbal working memory while the right is more Active in spatial working memory, such as Remembering where the Flash of light occurred.

In Humans, the Cerebellum [AR]= [C O F N3 H2], Plays an important Role in Motor Control.

Acetylcholine (ACh)= [C7 H16 Cl N O2]=12,14.10^15Hz - 7,98.eV Newsoni Tree for Memory

What is Aphasia? It's a Symptom of damage to the Parts of the Brain that control Language.

Types of Signal Transducing Messengers

- 1. First Messengers Agonists (i.e. Hormones, Neurotransmitters, Pharmacological Agonists)
- Second Messengers Molecules that Transmit Signals Received at Receptors (i.e., cAMP, cGMP, DNA Binding, ions)
- 3. Third Messengers (i.e., Ions, Protein kinases)

1=Hormones, N,P→Cholesterol = [C270H46], Testosterol = [C2 O2 H7], Estadiol = [C1 O2 H5] **Melatonin** = [C2 O2 N2 H8], Serotonin = [C10 O1 N2 H12], Amino Acid = [C3 O3 N2 H8],

Dopamine = [C8 O2 N1 H11], Isoptoterenol = [C11 H17 N1 O3], Phenyleprine = [C9h13 N O2]

2=Molecules cAMP=AMP = [C10 H14 N5 O7 P] , GMP = [N5 O7 H5 P] , DNA-Ions = [C15 H31 N3 O13 P2]

First Messengers are extracellular signaling molecules such as Hormones or Neurotransmitters that bind to cell-surface Receptors and activate intracellular signaling Pathways. Since these molecules cannot Physically cross the Cell-membrane, they Rely on Second Messengers to Propagate and Amplify the Signal within the cell. Second Messengers are non-Protein intracellular signaling molecules that Relay extracellular signals received at Receptors to target molecules within the Cytosol. Common Second messengers include Calcium, Cyclic AMP = [C10 H14 N5 O7 P], cyclic GMP = [N5 O7 H5 P], inositol Trisphosphate (IP3) and Diacylglycerol (DAG). [DAG] = P.[N4O4H4 +PO4]

CYTOSOL - Protein = [C8 H10 N6 O4] [IP] = <u>Ibuprofen | C13 H18 O2 | CID 3672</u>

Deoxyribonucleic Acid = | C15H31N3O13P2 | CID 44135672

APHASIA ACTION - PROCESS:

INITIAL STATE = [ACh+ AR] >>> [SOMA - AXON - DENDRITE]

FINAL STATE = MELATONIN → [SARM1 + NMNAT2] + [SOMA- AXON - DENDRITE]

THE BRAIN - ACTIONS = ANY - ACTION →

PROSPHOSERNIE

Alzheimer's disease: What Causes Alzheimer's??-ALS -

The causes of Alzheimer's disease are not yet fully understood, but probably include a combination of: Age-related changes in the brain, like shrinking, inflammation, blood vessel damage, and breakdown of energy within cells, which may harm neurons and affect other brain cells. Rssuch as intoxications, infections, Abnormality in the Pulmonary and Circulatory Systems, which causes a Reduction in the Oxygen -Supply to the Brain, Nutritional-Deficiency, Vitamin B12=[C63 H88 Co N14 O14 P] =22,93.10^155Hz-15,09Ev, Deficiency, Tumors, and others

Figure 1. The Physiological structure of the Brain and Neurons in (a) Healthy brain and (b) Alzheimer's disease (AD) brain.

Identification of an Intracellular Mechanism that mediates Motor Neuron (MN) Death in Amyotrophic Lateral Sclerosis (ALS) .

TABLE 2 - uploaded by Ertug
Aydin
Content may be subject to
copyright.

Planomentos	Thy sets	5,00000
freeshable folds, bolistelle Sidds, AU,CS, Fridds, CAC, AU,ES, Files, Fi	40, 74, 20, 5,2 5,34, 17,82 2,79, 1,14, 1,64	0.16 20.02 4.54 4.56 6.500 2.46 2.46 0.00

Chemical Compositions of Soma Fly Ash & Cement Disease-Neurons SOMA = [C12 H24 N2 O4]

Dendrite

Introduction to Biological Psychiatry. membrane lipids can participate on signal transduction. Properties of axonal membranes allowing Signal transmission in the form of action potentials:. Dendrite = N6O3H5

+ N2OH3 + N4O2H4 + N2OH3 + N7O3H5 + N2OH3 + N4O2H4 +N2OH3

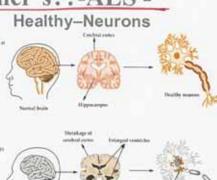
+ N6O3H5+ N2OH3+ N4O2H4+ N2OH3+ N7O3H5+ N2OH3+ N4O2H4+ N20H3

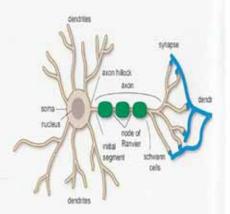
Axons are long projections of the nerve cell that are characterized by an excitable plasma Membrane. In myelinated axons, patches of axon membrane are wrapped into myelin sheath, which enables a more efficient transmission of electrical signal 1. The exposure to excessive stress can cause damage of the cellular membrane or myelin sheath, resulting in axon's dysfunctions that can

be the origin of Neurological Diseases 2:3:4. Knowing how these cellular elements respond to

Axon - Membrance Lipids (1)...Palmitate = [O2 O2 P O4 N] (2)...Palmitate = [H O N H O P O4 N] (3)...Palmitate = [H O N H O H5 O6]

Chaperone mutations for SOD1.

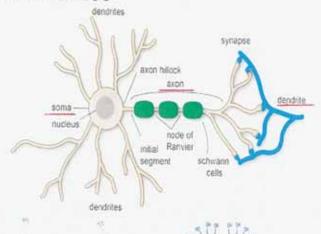

The efficacy of Superoxide dismutase-1 (SOD1) folding impacts Neuronal loss in Motor System Neurodegenerative diseases. Mutations can prevent SOD1 post-translational Processing leading to Misfolding and Cytoplasmic Aggregation in familial Amyotrophic Lateral Sclerosis (ALS).

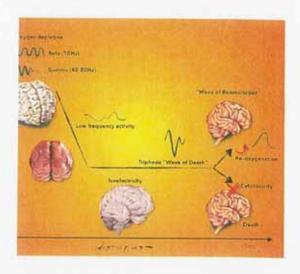

Adeno-associated virus (AAV) delivery to Spinal Neurons reduced SOD1 Misfolding,

The Catalytic Cycle at the Active Site of SOD1 → [1] = [Cu N5 O3 H16 As Zn] [2] = [Cu N5 O4 H14 As Zn], [3] = [Cu N5 O2 H15 As Zn], [4] = [Cu N5 O4 H14 As Zn],

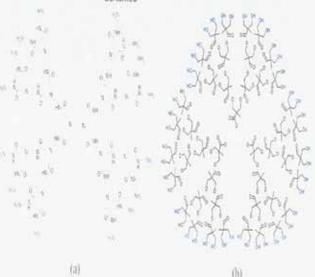
Acetylcholine (ACh)= [C7 H16 CI N O2]= 12,14.10^15Hz - 7,98.eV is an Organic Compound that functions in the Brain and Body of many types of Animals (including Humans) as a Neurotransmitter.[1] Its name is derived from its Chemical structure: it is an ester of acetic Acid and Choline. [2] Parts in the Body that Use or are Affected by Acetylcholine are referred to as Cholinergic.

hoppens at the Lc circuits, where The Antidote's Resonance frequency WRANT, oscillates ors an Tuning Lock, at the Brown Resonant. circuit tuned circuit





What happens in the brain when we die?


Deciphering the neurophysiology of the final moments in life

Dendrite

a minima dicion vi ca populyscopy was fair, during his pents of the lifeta and galaxie escalaracia are escalaracia. The copyring representation of the copy

(a) DENDRITE
[N6 O3 H5 +N2 O H3 +N4 O2 H4 +N2OH3 +
N7 O3 H5 +N2 O H3 +N4 O2 H4 +N2OH3 +
N6 O3 H5 +N2 O H3 +N4 O2 H4 +N2OH3]+

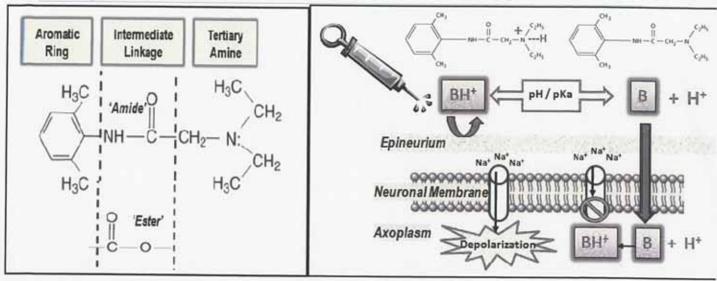
]+ 125,45e

N7 O3 H5 +N2 O H3 +N4 O2 H4 +N2OH3]+

THE ACTION PROCESS:

The T. (a) but a meeting PAMAM declarate the like any

INITIAL STATE = THE HEALTHY >>> [SOMA- AXON - DENDRITE]
FINAL STATE = THE DISEASED >>> [SOMA- AXON - DENDRITE]
THE BRAIN - ACTIONS = DRUGS - HIGH PRESSURE - DAMAGES


SOMA = 7,27.1015Hz - 4,79 eV AXON = 71,89.1015Hz - 47,32 eV DENDRITE = 190,59.1015Hz - 125,45.eV

OF THE BRAIN CENTER

THE LC-CIRCUIT OF LOCAL ANESTHETIC

The Antidote's Resonance frequency oscillates of the Local's Lo circuit's Resonance frequency (Tuned Circuit)

GENERAL PROPERTIES OF LOCAL ANESTHETICS

GENERAL

The molecular structure of all local anesthetics consists of 3 components: (a) lipophilic aromatic ring, (b) intermediate ester or amide linkage, and (c) tertiary amine. Each of these components contributes distinct clinical properties to the molecule. (See Figure 1.) Anesthetic Potency

Local anesthetics vary in their potency, allowing for concentrations that range typically from 0.5 to 4%. This is largely the result of differences in lipid solubility, which enhances diffusion through nerve sheaths and neural membranes. This property is determined by the aromatic ring and its substitutions, along with those added to the tertiary amine. For example, bupivacaine is more lipid soluble and potent than articaine, allowing it to be formulated as a 0.5% concentration (5 mg/mL) rather than a 4% concentration (40 mg/mL).

Time for Onset . Greater lipid solubility of a drug not only enhances potency but also enables more rapid diffusion through cell membranes. For local anesthetics, this hastens the onset for anesthesia in isolated fibers during in vitro studies, but it must be appreciated that other factors come into play clinically. For example, inherent vasodilating properties may promote systemic absorption before the anesthetic reaches the nerve membrane. High lipid solubility may impede dispersion throughout tissue fluids and also fosters sequestration in neighboring adipose tissues or myelin sheaths. In either case, fewer numbers of molecules reach the neuronal membrane and onset is delayed. Therefore, unlike in vitro studies of isolated fibers, greater lipid solubility generally slows the onset of anesthesia in the clinical setting. Injecting higher concentrations that allow a greater number of molecules to reach the membrane and hasten onset can offset this influence.

Although bupivacaine and articaine are both highly lipid soluble, the 4% concentration of articaine provides for a much faster onset.

Local anesthetics are broadly classified into two main groups: Esters and Amides.

LOCAL ANESTHESIA DRUGS

Local anesthesia drugs, commonly called local anesthetics, are medications that numb a specific area of the body, blocking pain signals to the brain without causing loss of consciousness. They are widely used in various medical and dental procedures to minimize discomfort during treatments.

Types of Local Anesthetics:

Local anesthetics are broadly classified into two main groups: Esters and Amides.

Esters: Historically, esters were the first type of local anesthetics

developed. Examples include:

Procaine : [Procaine | C13 H20 N2 O2 | CID 4914

A relatively short-acting ester.

Tetracaine: Tetracaine | C15 H24 N2 O2 | CID 5411 - PubChem

A longer-acting ester, sometimes used for spinal anesthesia.

Chloroprocaine: [Chloroprocaine | C13 H19 Cl N2 O2 | CID 8612 - PubChem

A short-acting ester used for spinal anesthesia.

Cocaine: [Cocaine | C17 H21 N O4 | CID 446220 While an ester, its use is

now limited due to its addictive properties and potential for toxicity.

Amides: Amides are the more commonly used local anesthetics today, known for their longer duration of action and lower incidence of allergic reactions

compared to esters. Examples include:

Lidocaine: Lidocaine | C14 H22 N2 O | CID 3676

The most widely used local anesthetic for various procedures, including dental work and minor surgeries.

Mepivacaine: [Mepivacaine | C15 H22 N2 O | CID 4062

A common amide used for dental and regional anesthesia.

Bupivacaine: Bupivacaine | C18 H28 N2 O | CID 2474 A longer-acting amide,

suitable for longer procedures or post-operative pain management.

Ropivacaine: [Ropivacaine | C17 H26 N2 O | CID 175805

Another longer-acting amide, similar to bupivacaine.

Prilocaine: Prilocaine | C13 H20 N2 O | CID 4906

A common amide used in dentistry and for topical anesthesia.

Mechanism of Action:

Local anesthetics work by blocking nerve impulses, specifically by binding to and inhibiting sodium channels on nerve cell membranes. This prevents the transmission of pain signals from the affected area to the brain, resulting in a numbing effect.

Tetrodotoxin = CII HIT N308] Blockage diszups Nerve Saxitoxin = CIO HIT N70 | and Muscle-Signalling GABA-RECEPTOR = CHH9 NO2 | leading to Paralysis (Anti-Signal Sodium-Calcium = Na Caz (The Inbetween Axon-Links)[14]

General anesthesia

General Anesthesia Drugs induce a reversible state of unconsciousness, allowing for Painless and Pain-free surgical procedures. These drugs are typically administered via intravenous Injection or Inhalation, and often involve a combination of both for Optimal Effect. Common examples include Propofol, Etomidate, Ketamine, and various inhaled anesthetics like Sevoflurane, Isoflurane, and Desflurane.

Propofol: Propofol | C12 H18 O | CID 4943

A commonly used IV anesthetic, known for its rapid onset and offset, making it suitable for both induction and maintenance of anesthesia.

Etomidate: Etomidate | C14 H16 N2 O2 | CID 667484

Another short-acting IV agent, often used for induction, especially in patients with cardiac conditions.

Ketamine: Ketamine | C13 H16 CI N O | CID 3821 - PubChem

Can be used for both induction and maintenance, and is also known for its analgesic properties.

Thiopental (Sodium Thiopental): Thiopental | C11 H18 N2 O2 S | 3000715 A barbiturate used for induction, but less common now due to the availability of newer agents.

Midazolam : Midazolam | C18 H13 CI F N3 | CID 4192

A benzodiazepine, often used for sedation and anxiety reduction before and during procedures. Inhaled Agents:

Sevoflurane: Sevoflurane | C4 H3 F7 O | CID 5206

A widely used inhalational Anesthetic, known for its relatively pleasant smell and rapid onset and offset.

Isoflurane : Isoflurane | C3 H2 Cl F5 O | CID 3763

Another common inhalational agent, often used for maintenance of anesthesia.

Desflurane: Desflurane | C3H2F6O | CID 42113

A highly volatile inhalational anesthetic, favored for its rapid changes in depth of anesthesia.

Nitrous Oxide: Nitrous Oxide | N2O | CID 948 - PubChem

Often used in combination with other inhalational agents, particularly for its analgesic properties. Other Important Considerations:

Muscle Relaxants: They are broadly classified into two categories:

neuromuscular blockers and spasmolytics. <u>Dicyclomine | C19 H35 N O2 |</u> Drugs like succinylcholine, vecuronium, and cisatracurium are often used to facilitate intubation and muscle relaxation during surgery.

Analgesics:

Fentanyl | C22H28N2O | CID 3345 - PubChem

Opioids like fentanyl, morphine = Morphine | C17 H19 N O3 | CID 5288826 and hydromorphone = Hydromorphone C17 H20 CI N O3 | CID 5284570 are frequently used for pain management during and after surgery.

Individualized Approach: The specific combination of drugs used for G-anesthesia is tailored to patient's individual needs, medical history, and the type of procedure being performed.

FOR EYES MUSCLES CI4 H30 N204/6

FSuccinge choline = C14 H30 N204/6

Vecuronium = C34 H57 N204/Bromide = C34 H57 Bz N204

Cisatracurium = C53 H72 N2012/14 Besylate = C65 H82 N2018S2

Key Considerations:

Duration of action:

Different local anesthetics have varying durations of action, with some lasting for a (-)(-)short period and others for several hours. (-) Wemax

Concentration and dosage:

The concentration and dosage of local anesthetics are carefully determined based on the specific procedure, patient weight, and other factors to ensure efficacy and safety.

Vasoconstrictors:

Vasoconstrictors, such as epinephrine, are often added to local anesthetic solutions to prolong their effect and reduce bleeding at the injection site.

Potential side effects:

While generally safe, local anesthetics can cause side effects such as allergic reactions, nerve damage, or, in rare cases, systemic toxicity if absorbed into the bloodstream in high concentrations.

· Topical vs. Injectable:

Local anesthetics can be administered topically (e.g., creams, gels, sprays) or through injection (e.g., dental injections, nerve blocks).

Examples of Use:

Local anesthetics are used in a wide range of medical and dental procedures, including:

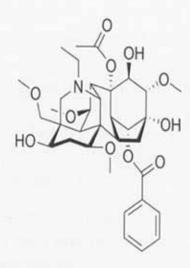
- Dental fillings and extractions.
- Minor surgical procedures like skin biopsies or stitches.
- Nerve blocks for pain management.
- Epidural anesthesia for childbirth.
- Ophthalmological procedures.
- Wound care.

GLUTAMINE: Glutamine | C5H10N2O3 | CID 5961

is its ability to be converted into α -KG, which helps to maintain the flow of the tricarboxylic acid cycle, generating ATP via the electron carriers NADH = NADH | C21 H29 N7 O14 P2

and FADH = Flavin-Adenine Dinucleotide | C27H33 N9 O15 P2 The highest consumption of glutamine occurs in the cells of the intestines, kidney cells (where it is used

(THC), The primary Psychoactive component in Cannabis, tetrahydrocannabinol (THC), has the chemical formula C21 H30 O2. It is a Terpenophenolic compound, meaning it combines characteristics of terpenoids and phenols. The specific isomer most commonly associated with the effects of marijuana is delta-9-tetrahydrocannabinol (Δ9-THC).


Cannabidiol (CBD) has the chemical formula C21 H30 O2 and a molecular weight of 314.5 g/mol. It's a terpenophenolic compound with a 21-carbon structure, characterized by two cyclohexene rings. CBD is one of the major non-psychoactive cannabinoids found in cannabis, alongside THC (tetrahydrocannabinol).

GABA = Cu H9NOz > Ligand gotted Channel Complex. Open or Close CNS = Noc Caz -> Node of Ranvier of Axon Schwan Cell = Vitamin bi+Ts = H3CNZ NHZNSH360H
TCR = C8H18N2Oz -> Reception Protein.

Aconitine

Aconitine is an <u>alkaloid</u> toxin produced by various Plant species belonging to the genus <u>Aconitum</u> (family <u>Ranunculaceae</u>), commonly known by the names <u>wolfsbane</u> and <u>monkshood</u>. Aconitine is notorious for its toxic properties.

Aconitine, a highly toxic alkaloid found in the Aconitum (monkshood) plant, has the chemical formula C34 H47 N O11 and a molecular weight of 645.74. It is a diterpenoid characterized by a complex cage-like structure with a hexacyclic ring framework (ABCDEF-ring). Aconitine contains three hydroxy groups, three methoxy groups, and one acyloxy group (acetate and benzoate) at specific positions within the molecule

Biosynthesis and total synthesis of related alkaloids

1..Homoponitine = [OCH3]2=[OH]2+ONO2 HNO

2..3-Acetylaponitine = [OCH3]+OH]2+OBz OON Ac OH3COO

3..Guan-fu Base-A = AcON OH HO O Ac

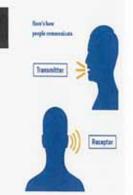
4.. Monoponitine = OCH3 + OA3OHOAc OONH3CO

5..Mesaconine = OCH3 + [OH]2 + OONHO H3CO

6..Aconitine = OCH3 + [OH]2 + OAc + OBz +OH O2NHO H3CO

7..Benzoylaconine = OCH3 + [OH]2 + OH + OBz +OH O2N HO H3CO

8..Aconine = OCH3 + [OH]2 + OH + OH +OH O2N HO H3CO


Anticholinergic effects (Parkinson - Antispasmodics Cramping pains & Spostic colon.

Londine Alcaloids howe Potential of Comment of the Comment of Comment

Drugs and the Brain

Introducing the Human Brain

The human brain is the most complex organ in the body. This three-pound mass of gray and white matter sits at the center of all human activity—you need it to drive a car, to enjoy a meal, to breathe, to create an artistic masterpiece, and to enjoy everyday activities. The brain regulates your body's basic functions, enables you to interpret and respond to everything you experience, and shapes your behavior. In short, your brain is you—everything you think and feel, and who you are.

How does the brain work?

The brain is often likened to an incredibly complex and intricate computer. Instead of electrical circuits on the silicon chips that control our electronic devices, the brain consists of billions of cells, called *neurons*, which are organized into circuits and networks. Each neuron acts as a switch controlling the flow of information. If a neuron receives enough signals from other neurons that it is connected to, it fires, sending its own signal on to other neurons in the circuit.

The brain is made up of many parts with interconnected circuits that all work together as a team. Different brain circuits are responsible for coordinating and performing specific functions. Networks of neurons send signals back and forth to each other and among different parts of the brain, the spinal cord, and nerves in the rest of the body (the peripheral nervous system). To send a message, a neuron releases a neurotransmitter into the gap (or synapse) between it and the next cell. The neurotransmitter crosses the synapse and attaches to receptors on the receiving neuron, like a key into a lock. This causes changes in the receiving cell. Other molecules called transporters recycle neurotransmitters (that is, bring them back into the neuron that released them), thereby limiting or shutting off the signal between neurons.

How do drugs work in the brain?

Drugs interfere with the way neurons send, receive, and process signals via neurotransmitters. Some drugs, such as marijuana and heroin, can activate neurons because their chemical structure mimics that of a natural neurotransmitter in the body. This allows the drugs to attach onto and activate the neurons. Although these drugs mimic the brain's own chemicals, they don't activate neurons in the same way as a natural neurotransmitter, and they lead to abnormal messages being sent through the network. Other abnormally large amounts of natural neurotransmitters or prevent the normal recycling of these brain chemicals by interfering with transporters.

This too amplifies or disrupts the normal communication between neurons.

D-1

The Coupling happens when,

The Drug's Resonance frequency oscillates.

out the CELL'S LC-CIRCUIT Resonance frequency.

How drugs get into cells: Tested and Testable Predictions to ...

Drugs that Block Receptors on or in a Cell and prevent an unwanted Response (in people) or may Prevent a desirable Response causing death (in Pathogens), s. Agonists bind to Receptors on or in a Cell and stimulate a Response.

Explainer: how do drugs work?

For something that seems so incredible, drug mechanics are wonderfully simple. Whether a drug is prescribed by the doctor, bought over the counter or obtained illegally, we mostly take their mechanism of action for granted and trust they will do what they're supposed to. But how does the ibuprofen pill turn off your headache? And what does the antidepressant do to help balance your brain chemistry?

For something that seems so incredible, drug mechanics are wonderfully simple. It's mostly about receptors and the molecules that activate them.

Receptors.

Receptors are large protein molecules embedded in the cell wall, or membrane. They receive (hence "receptors") chemical information from other molecules – such as drugs, hormones or neurotransmitters – outside the cell.

These outside molecules bind to receptors on the cell, activating the receptor and generating a biochemical or electric signal inside the cell. This signal then makes the cell do certain things such as making us feel pain.

Agonist drugs.

Those molecules that bind to specific receptors and cause a process in the cell to become more active are called agonists. An agonist is something that causes a specific physiological response in the cell. They can be natural or artificial.

For instance, endorphins are natural agonists of opioid receptors. But morphine – or heroin that turns into morphine in the body – is an artificial agonist of the main opioid receptor. An artificial agonist is so structurally similar to a receptor's natural agonist that it can have the same effect on the receptor. Many drugs are made to mimic natural agonists so they can bind to their receptors and elicit the same – or much stronger – reaction.

Simply put, an agonist is like the key that fits in the lock (the receptor) and turns it to open the door (or send a biochemical or electrical signal to exert an effect). The natural agonist is the master key but it is possible to design other keys (agonist drugs) that do the same job. Morphine, for instance, wasn't designed by the body but can be found naturally in opium poppies. By luck it mimics the shape of the natural opioid agonists, the endorphins, that are natural pain relievers responsible for the "endorphin high".

Specific effects such as pain relief or euphoria happen because opioid receptors are only present in some parts of the brain and body that affect those functions.

The main active ingredient in cannabis, THC, is an agonist of the cannabinoid receptor, and hallucinogenic drug LSD is a synthetic molecule mimicking the agonist actions of the neurotransmitter serotonin at one of its many receptors – the 5HT2A receptor.

Antagonist drugs C10 H12 N20

C10 H12 N20

An antagonist is a drug designed to directly oppose the actions of an agonist.

The Resonance of Antidotes and Localor General.

Neurotransmitting System allows Drugs to couple

with Receptors and Neurotransmitters.

Again, using the lock and key analogy, an antagonist is like a key that fits nicely into the lock but doesn't have the right shape to turn the lock. When this key (antagonist) is inserted in the lock, the proper key (agonist) can't go into the same lock. So the actions of the agonist are blocked by the presence of the antagonist in the receptor molecule.

Again, let's think of morphine as an agonist for the opioid receptor. If someone is experiencing a potentially lethal morphine overdose, the opioid receptor antagonist naloxone can reverse the effects.

This is because naloxone (marketed as Narcan) quickly occupies all the opioid receptors in the body and prevents morphine from binding to and activating them. Morphine bounces in and out of the receptor in seconds. When it's not bound to the receptor, the antagonist can get in and block it. Because the receptor can't be activated once an antagonist is occupying the receptor, there is no reaction.

The effects of Narcan can be dramatic. Even if the overdose victim is unconscious or near death, they can become fully conscious and alert within seconds of injection. Membrane transport inhibitors

Membrane transporters are large proteins embedded in a cell's membrane that shuttle smaller molecules – such as neurotransmitters – from outside of the cell that releases them, back to the inside. Some drugs act to inhibit their action.

Selective serotonin reuptake inhibitors (SSRIs) – such as the antidepressant fluoxetine (Prozac) – work like this.

Serotonin is a brain neurotransmitter that regulates mood, sleep and other functions such as body temperature. It's released from nerve terminals, binding to serotonin receptors on nearby cells in the brain.

For the process to work smoothly, the brain must quickly turn off the signals coming from the serotonin soon after the chemicals are released from the terminals. Otherwise moment-to-moment control of brain and body function would be impossible.

The brain does so with the help of serotonin transporters in the nerve terminal membrane. Like a vacuum cleaner, the transporters scoop serotonin molecules that haven't bound to receptors and transport them back to the inside of the terminal for later use. SSRI drugs work by getting stuck inside the vacuum hose so unbound serotonin molecules can't be transported back into the terminal.

Because more serotonin molecules are then hanging around receptors for longer, they continue to stimulate them.

We can crudely say the extra serotonin moderately turns up the volume of the signal to enhance positive mood. But the actual way this has an effect on depression and anxiety is far more complicated.

Around 40 per cent of all medicinal drugs target just one superfamily of receptors – the G-protein coupled receptors. There are variations on these drug mechanisms, including partial agonists and ones that act like antagonists but slightly differently. Overall though, a lot of drugs actions fall into the categories described above.

This article by Professor Mac Christie was originally published in <u>The Conversation</u>. He is a Professor of <u>Pharmacology</u> and Associate Dean (Research), Sydney Medical School at the University of Sydney.

THE ANTIDOTES, ENTER TO THE LOCAL OR TO THE BRAIN

< MEURUS - CELL - System >> THROUGH THE BLOOD.

THE ANTIDOTE'S SIGNALLING Mimies that OF LOCAL OR

OF THE BRAIN NEWROTRANSMITTERS, and thus, ALLOWS

TO ITS ATTACH ONTO AND ACTIVATE THE ENEURUS-COLL-System>

What parts of the brain are affected by drug use?

Drugs can alter important brain areas that are necessary for life-sustaining functions and can drive the compulsive drug use that marks addiction. Brain areas affected by drug use include:

- The basal ganglia, which play an important role in positive forms of motivation, including the pleasurable effects of healthy activities like eating, socializing, and sex, and are also involved in the formation of habits and routines. These areas form a key node of what is sometimes called the brain's "reward circuit." Drugs over-activate this circuit, producing the euphoria of the drug high. But with repeated exposure, the circuit adapts to the presence of the drug, diminishing its sensitivity and making it hard to feel pleasure from anything besides the drug.
- The extended amygdala plays a role in stressful feelings like anxiety, irritability, and unease, which characterize withdrawal after the drug high fades and thus motivates the person to seek the drug again. This circuit becomes increasingly sensitive with increased drug use. Over time, a person with substance use disorder uses drugs to get temporary relief from this discomfort rather than to get high.
- The prefrontal cortex powers the ability to think, plan, solve problems, make decisions, and exert self-control over impulses. This is also the last part of the brain to mature, making teens most vulnerable. Shifting balance between this circuit and the circuits of the basal ganglia and extended amygdala make a person with a substance use disorder seek the drug compulsively with reduced impulse control. Some drugs like opioids also disrupt other parts of the brain, such as the brain stem, which controls basic functions critical to life, including heart rate, breathing, and sleeping. This interference explains why overdoses can cause depressed breathing and death.

How do drugs produce pleasure?

Simple activities in everyday life can produce small bursts of neurotransmitters in the brain bringing pleasurable feelings. Drugs can hijack that process.

Pleasure or euphoria—the high from drugs—is still poorly understood, but probably involves surges of chemical signaling compounds including the body's natural opioids (endorphins) and other neurotransmitters in parts of the basal ganglia (the reward circuit). When some drugs are taken, they can cause surges of these neurotransmitters much greater than the smaller bursts naturally produced in association with healthy rewards like eating, hearing or playing music, creative pursuits, or social interaction.

Euphoria from Drugs happens when couples,
The Drug's Resonance frequency—and oscillates
at the Brain-Part LC-CIRCUIT = The Reward Circuit.
Resonance frequency.

D-4

Sasal Ganglia

It was once thought that surges of the neurotransmitter dopamine produced by drugs directly caused the euphoria, but scientists now think dopamine has more to do with getting us to repeat pleasurable activities (reinforcement) than with producing pleasure

directly. How does dopamine reinforce drug use?

The feeling of pleasure is how a healthy brain identifies and reinforces beneficial behaviors, such as eating, socializing, and sex. Our brains are wired to increase the odds that we will repeat pleasurable activities. The neurotransmitter dopamine is central to this. Whenever the reward circuit is activated by a healthy,

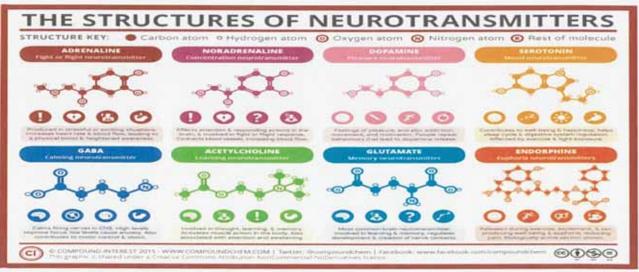
pleasurable experience, a burst of dopamine signals that something important is happening that needs to be remembered. This dopamine signal causes changes in neural connectivity that make it easier to repeat the activity again and again without thinking about it, leading to the formation of habits. Just as drugs produce intense euphoria, they also produce much larger surges of dopamine, powerfully reinforcing the connection between consumption of the drug, the resulting pleasure, and all the external cues linked to the experience. Large surges of dopamine "teach" the brain to seek drugs at the expense of other, healthier goals and activities.

Cues in a person's daily routine or environment that have become linked with drug use because of changes to the reward circuit can trigger uncontrollable cravings whenever the person is exposed to these cues, even if the drug itself is not available. This learned "reflex" can last a long time, even in people who haven't used drugs in many years. For example, people who have been drug free for a decade can experience cravings when returning to an old neighborhood or house where they used drugs. Like riding a bike, the brain remembers.

Why are drugs more addictive than natural rewards?

For the brain, the difference between normal rewards and drug rewards can be likened to the difference between someone whispering into your ear and someone shouting into a microphone. Just as we turn down the volume on a radio that is too loud, the brain of someone who misuses drugs adjusts by producing fewer neurotransmitters in the reward circuit, or by

reducing the number of receptors that can receive signals. As a result, the person's ability to experience pleasure from naturally rewarding (i.e., reinforcing) activities is also reduced. This is why a person who misuses drugs eventually feels flat, without motivation, lifeless, and/or depressed, and is unable to enjoy things that were previously pleasurable. Now, the person needs to keep taking drugs to experience even a normal level of reward—which only makes the problem worse, like a vicious cycle. Also, the person will often need to take larger amounts of the drug to produce the familiar high—an effect known as tolerance.


Long-term drug use impairs brain functioning.

Extended Amygdala

The extended Amygdala, a Brain region involved in stress and emotional responses, is characterized by a complex interplay of neurotransmitters and receptors. Key components include the bed nucleus of the stria terminalis (BNST), the central nucleus of the Amygdala (CeA), and the nucleus Accumbens shell. These regions are rich in various Neurotransmitters like GABA= [C4H9NO2] Glutamate= [C5 H7 N O4],

Dopamine = [C8 H11 N O2], and Serotonin = [C10 H12 N2 O], as well as Neuropeptides = [H2 N-ONO-N H] such as corticotropin-releasing factorCRF and substance Prefrontal cortex

The Prefrontal cortex (PFC) doesn't have a chemical structure in the same way that molecules do. Instead, it's a region of the Brain composed of neurons, glial cells&various chemical messengers (neurotransmitters) that allow it to function. The PFC's structure & the interplay of these chemicals determine its role in higher-level cognitive functions.

1 = Adrenaline -→ Pleasure - Drug . = [C9 H13 N O3] 2 = Nor-Adrenaline = [C8 H11 N O3] 3 = Dopamine = [C8 H11 N O2] → Pleasure – Drug . 4 = Seratonine = [C10 H12 N2 O] → Pleasure – Drug . 5 = Gaba = [C4 H9 N O2] 6 = Acetylcholine = [C7 H16 N O 2]- Agonist of Opioid 7 = Glutamate= [C77 H120 N18 O26 S] 8 = A-Endorphin = [C77 H120 N18 O26 S] 9 = B-Endorphin = [C77 H120 N18 O26 S] 10= Amphetamine = [C9 H13 N]→ Pleasure – Drug . = [C20 H25 N3 O] 11= LSD → Pleasure – Drug . 12= Psilocybin = [C12 H12 N2 O4 P] → Pleasure – Drug . 13= GHB-Depressed = [C4 H8 O3]→ Depressed – Drug . 14= Hydroxybutaneate = [C4 H7 O3] → Depressed – Drug → Aztificial Agenist-Opioid

→ Aztificial Agenist-Opioid 15 = Mozphine = [C17 H19 NO3] 16 = Heroin = [CZI H23 NO5]

Chemotherapy:

Breast cancer treatments utilize various drugs to target cancer cells and inhibit their growth. Chemotherapy uses cytotoxic drugs to kill cancer cells, while targeted therapy focuses on specific proteins on cancer cells to hinder their survival and spread. Hormone therapy blocks hormones that promote cancer growth, and immunotherapy uses the body's immune system to fight cancer.

Mechanism: • Mechanism: C22H29NO11 C7H15Cl2 N2O2P
Chemotherapy drugs, like epirubicin and cyclophosphamide, are cytotoxic, meaning they kill rapidly dividing cells. They disrupt cell division and DNA replication, ultimately leading tocall death.

Application:

Chemotherapy is often used to shrink tumors before surgery, eliminate remaining cancer cells after surgery, or treat advanced breast cancer.

Types:

Various chemotherapy drugs exist, each targeting cancer cells in different ways. For example, some damage DNA, while others interfere with cell division or metabolism.

Side Effects:

Due to their effect on rapidly dividing cells, chemotherapy drugs can also affect healthy cells, leading to side effects like hair loss, nausea, and fatigue.

Targeted Therapy:

Mechanism:

• Mechanism: C29 H26 CとF N404号
Targeted therapies focus on specific proteins or pathways involved in cancer cell growth and survival. For example, drugs like lapatinib block HER2 receptors, which are overexpressed in some breast cancers, hindering cell growth. Glycoprotely=C2 & HU7 NSOIR

Application:

Targeted therapies are often used in conjunction with chemotherapy or hormone therapy to enhance treatment effectiveness.

Types:

CIEHZANO Targeted therapies include drugs that block hormone receptors (like tamoxifen and aromatase inhibitors), HER2 inhibitors (like trastuzumab), and drugs that target other specific proteins involved in cancer cell growth. C 6470 H10012 N1726 02013 \$42 Hormone Therapy:

Mechanism:

Hormone therapy targets hormone receptors on breast cancer cells, preventing hormones like estrogen from promoting cancer cell growth.

Application: CI8H240z

Hormone therapy is typically used for estrogen receptor-positive breast cancers, which rely on estrogen for growth.

GITHIA NS Types:

Common hormone therapies include tamoxifen, aromatase inhibitors (like Immunotherapy: anastrozole), and fulvestrant.

Mechanism: C32 H47 F503 S Immunotherapy drugs stimulate the body's own immune system to recognize and attack cancer cells.

Application:

Immunotherapy is a newer approach to breast cancer treatment, particularly for advanced or metastatic breast cancer.

All Drugs for Chemotherapy can be Tested. for their coupling to the Locator General. Neurotransmitting System, through their

LOCAL ANESTHESIA DRUGS

Local anesthesia drugs, commonly called local anesthetics, are medications that numb a specific area of the body, blocking pain signals to the brain without causing loss of consciousness. They are widely used in various medical and dental procedures to minimize discomfort during treatments.

Types of Local Anesthetics:

Local anesthetics are broadly classified into two main groups: Esters and Amides.

Esters: Historically, esters were the first type of local anesthetics developed. Examples include:

Procaine: [Procaine | C13 H20 N2 O2 | CID 4914

A relatively short-acting ester.

Tetracaine: | Tetracaine | C15 H24 N2 O2 | CID 5411 - PubChem

A longer-acting ester, sometimes used for spinal anesthesia.

Chloroprocaine | C13 H19 Cl N2 O2 | CID 8612 - PubChem

A short-acting ester used for spinal anesthesia.

Cocaine: [Cocaine | C17 H21 N O4 | CID 446220 While an ester, its use is

now limited due to its addictive properties and potential for toxicity.

Amides: Amides are the more commonly used local anesthetics today, known for their longer duration of action and lower incidence of allergic reactions compared to esters. Examples include:

Lidocaine | C14 H22 N2 O | CID 3676

The most widely used local anesthetic for various procedures, including dental work and minor surgeries.

Mepivacaine: [Mepivacaine | C15 H22 N2 O | CID 4062

A common amide used for dental and regional anesthesia.

Bupivacaine: [Bupivacaine | C18 H28 N2 O | CID 2474 A longer-acting amide,

suitable for longer procedures or post-operative pain management.

Ropivacaine: | Ropivacaine | C17 H26 N2 O | CID 175805

Another longer-acting amide, similar to bupivacaine.

Prilocaine: Prilocaine | C13 H20 N2 O | CID 4906

A common amide used in dentistry and for topical anesthesia.

Mechanism of Action:

Local anesthetics work by blocking nerve impulses, specifically by binding to and inhibiting sodium channels on nerve cell membranes. This prevents the transmission of pain signals from the affected area to the brain, resulting in a numbing effect.

Tetrodotoxin = CI HIT N308] Blockage diszups Nexue Saxitoxin = CIOHIT N70 | and Muscle-Signalling GABA-RECEPTOR = C4H9 NO2 | leading to Paralysis (Anti-Signal Sedium-Calcium = Na Caz (The Inbetween Axon-Links) D-8

General anesthesia

General Anesthesia Drugs induce a reversible state of unconsciousness, allowing for Painless and Pain-free surgical procedures. These drugs are typically administered via intravenous Injection or Inhalation, and often involve a combination of both for Optimal Effect. Common examples include Propofol, Etomidate, Ketamine, and various inhaled anesthetics like Sevoflurane, Isoflurane, and Desflurane.

Propofol : Propofol | C12 H18 O | CID 4943

A commonly used IV anesthetic, known for its rapid onset and offset, making it suitable for both induction and maintenance of anesthesia.

Etomidate : Etomidate | C14 H16 N2 O2 | CID 667484

Another short-acting IV agent, often used for induction, especially in patients with cardiac conditions

Ketamine: Ketamine | C13 H16 CI N O | CID 3821 - PubChem

Can be used for both induction and maintenance, and is also known for its analgesic properties.

Thiopental (Sodium Thiopental): Thiopental | C11 H18 N2 O2 S | 3000715 |
A barbiturate used for induction, but less common now due to the availability of newer agents.

Midazolam : Midazolam | C18 H13 CI F N3 | CID 4192

A benzodiazepine, often used for sedation and anxiety reduction before and during procedures. Inhaled Agents:

Sevoflurane : Sevoflurane | C4 H3 F7 O | CID 5206

A widely used inhalational Anesthetic, known for its relatively pleasant smell and rapid onset and offset.

Isoflurane : Isoflurane | C3 H2 CI F5 O | CID 3763

Another common inhalational agent, often used for maintenance of anesthesia.

Desflurane : Desflurane | C3H2F6O | CID 42113

A highly volatile inhalational anesthetic, favored for its rapid changes in depth of anesthesia.

Nitrous Oxide: Nitrous Oxide | N2O | CID 948 - PubChem

Often used in combination with other inhalational agents, particularly for its analgesic properties. Other Important Considerations:

Muscle Relaxants: They are broadly classified into two categories:

neuromuscular blockers and spasmolytics. Dicyclomine | C19 H35 N O2 |

Drugs like succinylcholine, vecuronium, and cisatracurium are often used to facilitate intubation and muscle relaxation during surgery.

Analgesics:

Fentanyl | C22H28N2O | CID 3345 - PubChem

Opioids like fentanyl , morphine = Morphine | C17 H19 N O3 | CID 5288826 and hydromorphone = Hydromorphone C17 H20 CI N O3 | CID 5284570

are frequently used for pain management during and after surgery.

Individualized Approach: The specific combination of drugs used for G-anesthesia is tailored to patient's individual needs, medical history and the type of procedure being performed.

recinge choline = C14 H30 N204/6
Vecuronium = C34 H57 N204 Bromide = C34 H57 Bt N204
Cisatracurium = C53 H72 N2012/14 Begylate = C65 H82 N2018S2

Key Considerations:

· Duration of action:

Different local anesthetics have varying durations of action, with some lasting for a (-)(-)short period and others for several hours. (-) Wemax

· Concentration and dosage:

The concentration and dosage of local anesthetics are carefully determined based on the specific procedure, patient weight, and other factors to ensure efficacy and safety.

Vasoconstrictors:

Vasoconstrictors, such as epinephrine, are often added to local anesthetic solutions to prolong their effect and reduce bleeding at the injection site.

· Potential side effects:

While generally safe, local anesthetics can cause side effects such as allergic reactions, nerve damage, or, in rare cases, systemic toxicity if absorbed into the bloodstream in high concentrations.

Topical vs. Injectable:

Local anesthetics can be administered topically (e.g., creams, gels, sprays) or through injection (e.g., dental injections, nerve blocks).

Examples of Use:

Local anesthetics are used in a wide range of medical and dental procedures, including:

- Dental fillings and extractions.
- Minor surgical procedures like skin biopsies or stitches.
- Nerve blocks for pain management.
- · Epidural anesthesia for childbirth.
- Ophthalmological procedures.
- Wound care.

GLUTAMINE: Glutamine | C5H10N2O3 | CID 5961

is its ability to be converted into α -KG, which helps to maintain the flow of the tricarboxylic acid cycle, generating ATP via the electron carriers NADH = NADH | C21 H29 N7 O14 P2

and FADH = Flavin-Adenine Dinucleotide | C27H33 N9 O15 P2 The highest consumption of glutamine occurs in the cells of the intestines, kidney cells (where it is used

(THC), The primary Psychoactive component in Cannabis, tetrahydrocannabinol (THC), has the chemical formula C21 H30 O2. It is a Terpenophenolic compound, meaning it combines characteristics of terpenoids and phenols. The specific isomer most commonly associated with the effects of marijuana is delta-9-tetrahydrocannabinol (Δ9-THC).

Cannabidiol (CBD) has the chemical formula C21 H30 O2 and a molecular weight of 314.5 g/mol. It's a terpenophenolic compound with a 21-carbon structure, characterized by two cyclohexene rings. CBD is one of the major non-psychoactive cannabinoids found in cannabis, alongside THC (tetrahydrocannabinol).

GABA = Cu H9NO2 -> Ligand goted Channel Complex Open or Close

CNS = Now Cour -> Nede of Ranvice of Axon

Sahwan Cell = Vitamin bi+Ts = H3CN2 NH2N5H360H

TCR = C8H18N2O2 -> Reception Protein.

D-10

Comparison Results

The Initial Healthy [Carrier] Compound

BRAIN - APHASIA >> SEROTONIN = [C10 O H12 N2]+DOPAMINE = [C8 H11 N O2]+GABA Receptor = C4 H9 N O2 : C10C8C4H12H11H9N2NNO2O2O

21.536219 x 1015 Hz W RI 14.175157177979571 eV E RI f RI 3.427697 x 1015 Hz 17.702424 x 105 m/s U RI λ RI 5.164677 x 10⁻¹⁰ m A RBI 0.068499 x 10⁻¹⁰ m V RI 14.1750988083239 Volt V sBI 15.5926728957776 Volt P RI 0.67565739 x 10-2° Watt P RMI 1.01348609 x 10-20 Watt 0.33782869 x 10-2° Watt P BRMI

The Initial Energy-Spectrum
E-SINITIAL

Helical r RI = ARI 0.8219838158 x 10⁻¹⁰ m

M-Field 0.708622 x 10⁻⁶ Tesla

Tvi = 583,105 Kelvin

0.1949927566 x 10⁻¹² Ampere Ici =

The Final Deseased [Modulated] Compound

MOG- Myelin = [C80H105N21O27 S]+Ach = [C7H16NO2] + SOMA=[C12H24N2O4]+SARM1= [N3O3F3H2]+NMNAT2 = [N2OH2+O3H2+PO4H] +SARM2 =[C2N2O2F3H] + DENDRITE

:SPPPC80C12C7C2F3F3N21N7N7N6N6N4N4N4N4N4N3N2N2N2N2N2N2N2N2N2N2N2NNNNNNO27O6O4O4O4O4

H₃H₃H₃H₃H₂H₂H₂HHHHHHH

The Final Energy-Specteum 868.344918 x 1015 Hz W RF E RF 571.5453408467795 eV 138.205462 x 1015 Hz f RF

λ RF 3.928279 x 10⁻¹° m

542.893599 x 105 m/s

A RBF 0.00638 x 10⁻¹⁰ m

V RF 571.542987369894 Volt

V SBF

628.699874931457 Volt 0.39088131 x 10-2° Watt P RF

P RMF 0.58632196 x 10-2° Watt

0.19544065 x 10-2° Watt

P BRMF

Complementary

U RF

1693.61739853 x 1015 Hz W RC

E RC 1114.73116315077 eV

f max - UB 141.633159 x 1015 Hz

f min - UB 134.777765 x 1015 Hz

0.975198543029013 B IF

m IF 0.64921491420721

ΔW RES 1715.153618 x 1015 Hz

V_{SRD} 1226.21440407136 Volt

ΔW BAN 0 x 1015 Hz

P TBW 0.78176262 x 10-2° Watt

Helical r RF = ARF = 0.6252050163 x 10⁻¹⁰ m

MFF = M-Field 0.118757 x 10⁻⁶ Tesla

TVF = 2.872.27 Kelvin

ICF = 0.0027977831 x 10⁻¹² Ampere

> The Needed Energy-Spectry E-SDEMOD

Ni = 12 $N_F = 98$

M-Field Mfn = -1.179731 x 10-6 Tesla

Icc = 1.91262463 x 10-15 Ampere

Compound		
Description	FROM G-ANESTHESIA DRUG	6 Ketamine = 27.[C13 H16
Formula	CI N O] 874 C874H432Cl27N27O27	27 Dose of Ketamine Drug Allows the Continuous
Total Number of Elements	1387	Leeding of Drug to Brown.
Stiffness Factor	566352	Hunnesis

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	874	С	12	10488	3496	3496		
2	27	CI	35	945	27	27		
3	432	Н	1	432	432	432	C	
4	27	0	16	432	54	54		
5	27	N	14	378	81	81	(

Bond - Mode

349	27	432	54	81	= 409
C ⁶	CI	Н	0	N	T O
349 6	27	432	54	81	409 0

The 4-elements groups Act Separately each other with Strong frequencies WRIW2

Matrices

Mass Matrix

m	v					
111	×	10488	0	0	0	0
		0	945	0	0	0
		0	0	432	0	0
		0	0	0	432	0
		0	0	0	0	378

Stiffness Matrix

Flexibility Matrix

Antidote (Drug Ketamine) is continually Acting on the MODULATED-BRAIN System by Increasing or Decreasing the followings

1. From Voltage Transformers Chemicae

Synthesis VMI. 2, = VMA. 2 A increases The flow of Energy more than 1065 more 2. The high Modulated Power from 0,586.10-20 World Decreases to 0,061024.1020 Watt, or 572 times less Power 3. From the 98 Groups of glements Decreases to 5 Group Elements, or WR98 = 868,3.1015H7 to WRS=135,1015 and 196 = 135.10 Hz to 45 = 45.10 5HZ which Vibrates letween -44/145,1015/12 400 By Increasin the Temperature from 2872 Kelvin to 15652 or 5,5 times more Antrolote Activates its Resonances-Cells by Coupling to Signalling Beain Neurotroms mittees and Activating Anesthesia. D94-A

 $\Phi_{5} = 1.0870264$ x 0.92464 0.95489

Modes Dynamic - Results

λ1	= 0.00822394 nm	W ₁	= 537.040876 x 10 ¹⁵ Hz	f ₁ = 85.47271 x 10 ¹⁵ Hz	Εı	= 353.48074695 eV
λ_2	= 1.01191367 nm	W ₂	= 4.254728 x 10 ¹⁵ Hz	$f_2 = 0.677161 \times 10^{15} Hz$	E2	= 2.80046548 eV
λз	= 1.00510909 nm	W ₃	= 17.076424 x 10 ¹⁵ Hz	$f_3 = 2.717797 \times 10^{15} \text{ Hz}$	E ₃	= 11.2397162 eV
λ4	= 1.0379888 nm	W ₄	= 5.941036 x 1015 Hz	$f_4 = 0.945545 \times 10^{15} \text{ Hz}$	E4	= 3.91039492 eV
λ5	= 1.0870264 nm	W ₅	= 7.110238 x 1015 Hz	f ₅ = 1.131629 x 10 ¹⁵ Hz	E ₅	= 4.67996426 eV

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

W ₁ = 537.040876 x 10 ¹⁵ Hz	U1 = 1.088	3804 x 10 ⁵	m/s	$\lambda_1 = 0.012739 \times 10^{-10} \text{ m}$	$A_1 = 0.002027 \times 10^{-10} \text{ m}$
W ₂ ≈ 4.254728 x 10 ¹⁵ Hz	U ₂ = 0.322	2859 x 10 ⁵	m/s	$\lambda_2 = 0.476783 \times 10^{-10} \text{ m}$	A ₂ = 0.075882 x 10 ⁻¹⁰ m
W ₃ = 17.076424 x 10 ¹⁶ Hz	Ua = 0.956	6641 x 10 ⁵	m/s	$\lambda_a = 0.351991 \times 10^{-10} \text{ m}$	A ₃ = 0.056021 x 10 ⁻¹⁰ m
W ₄ = 5.941036 x 10 ¹⁵ Hz	U ₄ = 0.564	263 x 10 ⁵	m/s	$\lambda_4 = 0.59676 \times 10^{-10} \text{ m}$	A ₄ = 0.094977 x 10 ⁻¹⁰ m
Ws = 7.110238 x 10 ¹⁵ Hz	Us = 0.659	9916 x 10 ⁵	m/s	$\lambda_s = 0.583156 \times 10^{-1}$ ° m	A ₅ = 0.092812 x 10 ⁻¹⁰ m
Circular - Frequency	=	W_R	=	285.711651 x 1015 Hz	
Resonance - Energy	=	ER	=	188.05564390588876 eV	0 0
Resultant - Velocity	=	UR	=	7.46683 x 10 ⁵ m/s	The Energy-Spectrum
Resultant - λ	=	λ_R	=	0.164206 x 10 ⁻¹⁰ m	of Ketamine Antidote
Re Helical - r = AR	=	r _R	=	0.0261341457 x 10 ^{-1°} m	0 -
Bands UL - Amplitude	=	ARB	=	0.013067 x 10 ⁻¹ ° m	Lor Beneral
Resultant - Potential	=	VRP	=	188.054869541058 Volt	Anesthesia.
SideBand - Potential	=	V_{SB}	=	206.861208296478 Volt	Anesthesia.
Intensity - Current	=	Ic	=	9.9051E-06 x 10 ⁻¹² Ampere	TI NEWE
Vaporation -Temperature	=	Τv	=	15,651.600 Kelvin	The NEW Frequency
Magnetic - Field	=	Mr	=	0.773811 x 10 ⁻⁶ Tesla	of the 5-2-lements
Carrier - Power	=	PCR	=	0.00068299 x 10 ^{-2°} Watt	Vorties between.
T.Modulated - Power	=	P _{TRM}	=	0.00102449 x 10 ^{-2°} Watt	-40~45./10'SHZ
SideBands - Power	=	P _{SBM}	=	0.00034149 x 10 ⁻²⁰ Watt	13 (10 112)

σı = U₁/ φ 0.672918 x 105 N/mm2 ∆ w₁ = W_R-W₁ = -251.329225 x 10¹⁵ Hz Σ w₁ = 822.752526 x 10¹⁵ Hz W R + W1 fw₁ = ΔW₁/2π = -40.000289 x 10¹⁵ Hz E dF1 = -165.42510305 eV h x fw₁ k, = $\Delta W_1 / \Sigma W_1$ = -0.305473659 = W_R/W_1 β, = 0.532010995 = 1/W₁ 0.001862 x 10⁻¹⁵ Rad Ρ, = 0,5 * A₁2 0.0000 x 10^{-2°} Watt

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

Antidote - Action

The Antidote	A		STHESIA DRUG Ketamine = 27.[C13 74 : C ₈₇₄ H ₄₃₂ Cl ₂₇ N ₂₇ O ₂₇	The Antidote was Detected
[C7H16NO2] + [N3O3F3H2]+N +SARM2 =[C2 : SPPPC ₈₀ C ₁₂ C ₇ 2N ₂ N O ₃ O ₂		E[C80H105N21O27 S]+Ach = SOMA=[C12H24N2O4]+SARM1= NMNAT2 = [N2OH2+O3H2+PO4H] N2O2F3H] + DENDRITE C2F3F3N21N7N7N6N6N4N4N4N4N3N2N2N2N2N N2NNNNNO27O6O4O4O4O4O3O3O3O3O3 O2O2O2OOOOOOOOOOH105H24H4H4H4H4H3H3H3H3H3H3H3H3H3H3H2H2H2	From Program and is For the Bra Anesthesia o Aphasia.	
Needed W	=	1	1715.15361766 x 10 ¹⁵ Hz	0
Needed E	=		1128.90632032875 eV	Resonance Between Drag
Circular - Frequency	= W _{RA}	N =	1715.97417138 x 10 ¹⁵ Hz	Ketomine and
Resonance - Energy	= E _{RA}	10.5	1129.4556136545116 eV	BRAIN
Frequency - Antidote	= f _{AN}		273.113826418 x 10 ¹⁵ Hz	Neurotransmitte
Resultant - Velocity	= U _{RA}	NT =	18.411773 x 10 ⁵ m/s	is sucreeded.
Resultant - λ	= λ _{RA}	NT =	0.0674142838 x 10 ⁻¹ ° m	through the
Re Helical - r = ARANT	= r _{RA}	NT =	0.0107293165 x 10 ⁻¹ ° m	Program.
Modulated SB - Potential	= V _{SB}	=	1114.73577712314 Volt	7
SideBands AN - Potential	= V _{SB}	A =	1242.40117501996 Volt	The Program.
Resultant - A - Potential	= V _{RA}	p =	1143.41343486932 Volt	Sends The three
Intensity - Current	= I _C	=	5.92162299 x 10 ⁻¹⁷ Ampere	Newsptanimitte
Antidote V - Temperature	= T _{VA}	=	338.024 Kelvin	Secretonin-Dopamin
Modulated M-Field	= M _{FM}	oD =	-1.179731 x 10 ⁻⁶ Tesla	GAB-Receptor TO
Antidote - M-Field	= M _{FAI}	uT =	1.90807 x 10 ⁻⁶ Tesla	The Brown Muelin
Antidote - Phase - Shift	= φ _{AN}	r =	0.000583 x 10 ⁻¹⁵ Rad	The Brown . Myeli- S'oma-Axon-NUNI
Phase - Modul. Index	= β _{MA}	NT =	2.03932488174392	Sarm I Dendrite
Bands UL - Deviation	= ΔWR	ES =	847.6292529905 x 10 ¹⁵ Hz	Antidote
Bands UL - Width	= P _{BR}	M =	54.6227652836 x 10 ¹⁵ Hz	minies the Brain
Modulate - Factor	= m _{FA}	. =	0.0130286185123278	Neurotrany mitter
Bands UL - Amplitude	= A _{BUI}	=	0.002146 x 10 ⁻¹ ° m	Signalling and
Carrier - Power	= P _{CA}	=	0.00011511 x 10 ^{-2°} Watt	Activate its
T. Modulated - Power	= P _{TM}	=	0.00017267 x 10 ^{-2°} Watt	Resonances Cel
SideBands - Power	= P _{SB}	=	0.00005755 x 10 ^{-2°} Watt	Signalling to
Latamine (-) AEVS Spects			(+) AEVS Spectrum	Signalling to

	Antidote -	Action	The Antidote	
The Antidote		ESTHESIA DRUG Cocaine = 59,[C17	Was Detected	
	H21 N O4] -1	000 : C1000H1239N59O236	A 0	
Final Compound	[C7H16NO2] [N3O3F3H2]+ +SARM2 =[C2 : SPPPC ₈₀ C ₁₂ C 2N ₂ N ₂ N ₂ N ₂ N ₂ N ₂ N O ₃ O ₂ O ₂ O ₂ O ₂ O ₂ O	= [C80H105N21O27 S]+Ach = + SOMA=[C12H24N2O4]+SARM1= -NMNAT2 = [N2OH2+O3H2+PO4H] 2N2O2F3H] + DENDRITE	Jeon Program. and is. Jor the Brain Anesthesia or Aphosia.	
Needed W	=	1715.15361766 x 10 ¹⁵ Hz	The Absolute	
Needed E	=	1128.90632032875 eV	Resonance	
Circular - Frequency	= W _{RAN} :	= 1715.00939852 x 1015 Hz	Between Deag	
Resonance - Energy	= E _{RAN} :	= 1128.8205993589759 eV	Colcaine and	
Frequency - Antidote	= f _{ANT} :	= 272.9602735187 x 10 ¹⁵ Hz	BRAIN	
Resultant - Velocity	= U _{RANT} :	= 9.752001 x 10 ⁵ m/s	Neurotzammitte	
Resultant - λ	= λ_{RANT} :	= 0.035726814 x 10 ⁻¹ ° m	As succeeded	
Re Helical - r = ARANT	= Inaur :	= 0.0056860991 v 10 ⁻¹⁰ m	() A to	

 $r_{RANT} = 0.0056860991 \times 10^{-10} \text{ m}$ Program. Modulated SB - Potential V_{SBF} = 1114.73577712314 Volt SideBands AN - Potential V_{SBA} = 1241.70265929487 Volt The Program
Sends the three Resultant - A - Potential $V_{RAP} = 1142.7705730622 \text{ Volt}$ Intensity - Current I_C = 1.66312726 x 10⁻¹⁷ Ampere Antidote V - Temperature = 231.144 Kelvin New to tray my ters Modulated M-Field M_{FMOD} = -1.179731 x 10⁻⁶ Tesla Secatorin-Dopon Antidote - M-Field $M_{FANT} = 2.500964 \times 10^{-6} \text{ Tesla}$ Antidote - Phase - Shift $\varphi_{ANT} = 0.000583 \times 10^{-15} \text{ Rad}$ Phase - Modul. Index $\beta_{MANT} = 7.01809740318763$ Bands UL - Deviation ΔWRES = 846.6644801243 x 10¹⁵ Hz Bands UL - Width $P_{BRM} = 68.2400683797 \times 10^{15} Hz$ Modulate - Factor $m_{FAN} = 0.0124734010252574$ Bands UL - Amplitude $A_{BUL} = 0.001422 \times 10^{-10} \text{ m}$ Carrier - Power $P_{CA} = 0.00003233 \times 10^{-2}$ ° Watt T. Modulated - Power $P_{TM} = 0.00004849 \times 10^{-2}$ Watt SideBands - Power PSB = 0.00001616 x 10-2° Watt coupled System

GABA · ReceptorTo the Brain Myclin Soma Axon Soum THE ANTIDOTE minies the Bruis Neurotronswitters Signalling and Activates its own

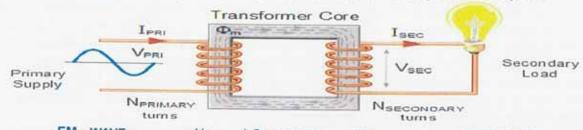
The Demodulated FM - Waveform

(-) AEVS Spectrum

(+) AEVS Spectrum

Antidote - Action

The Antidote	FROM L-ANESTHESIA DRUG Ropivacaine = 48,[C17 H26 N2 O] 812-1332 : C ₈₁₂ H ₁₃₃₂ N ₉₆ O ₄₈	The Antidote
Final Compound	MOG- Myelin = [C80H105N21O27 S]+Ach = [C7H16NO2] + SOMA=[C12H24N2O4]+SARM1= [N3O3F3H2]+NMNAT2 = [N2OH2+O3H2+PO4H] +SARM2 =[C2N2O2F3H] + DENDRITE : SPPPC80C12C7C2F3F3N21N7N7N6N6N4N4N4N4N3N2N2N2N2N2N2N2N2N2N2N2N2N2NNNNNO27O6O4O4O4O4O3O3O3O3O3O3O3O3O2O2O2O2O2O2O2O2	was Detecter from Program ound B For the Bray's Anesthesia & Aphasia.

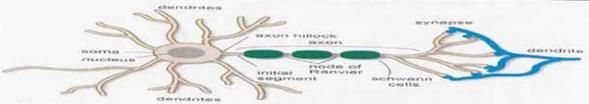

	2000	5 (10) 25 (21)			
Needed W	=			1715.15361766 x 10 ¹⁵ Hz	The Absolute
Needed E	=			1128.90632032875 eV	Desonomice
Circular - Frequency	=	W _{RAN}	=	√1715.15563768 x 10 ¹⁵ Hz	Between the Dru
Resonance - Energy	=	E _{RAN}	=	1128.9168540964145 eV	Ropivacanine
Frequency - Antidote	=	f _{ANT}	=	272.9835488908 x 1015 Hz	and Brain
Resultant - Velocity	=	URANT	=	10.796287 x 10 ⁵ m/s	.1s succeeded
Resultant - λ	=	λ_{RANT}	=	0.0395492238 x 10 ⁻¹ ° m	
Re Helical - r = ARANT	=	r _{RANT}	=	0.0062944545 x 10 ⁻¹ ° m	through the Progra
Modulated SB - Potential	=	V_{SBF}	=	1114.73577712314 Volt	The Program.
SideBands AN - Potential	=	V _{SBA}	=	1241.80853950606 Volt	creates the
Resultant - A - Potential	=	V _{RAP}	=	1142.86801731643 Volt	ANTIDOTE
Intensity - Current	=	Ic	=	2.03804061 x 10 ⁻¹⁷ Ampere	which mimies.
Antidote V - Temperature	=	T _{VA}	=	256.018 Kelvin	the Brown -
Modulated M-Field	=	M _{FMOD}	=	-1.179731 x 10 ⁻⁶ Tesla	Neuroteanmitt
Antidote - M-Field	=	M _{FANT}	=	2.679784 x 10 ⁻⁶ Tesla	and jumps up
Antidote - Phase - Shift	=	ϕ_{ANT}	=	0.000583 x 10 ⁻¹⁵ Rad	/ / /
Phase - Modul. Index	=	β_{MANT}	=	7.09240107247707	coupled Syste
Bands UL - Deviation	=	ΔWRES	=	846.8107192871 x 10 ¹⁵ Hz	'es
Bands UL - Width	=	P _{BRM}	=	68.2458872227 x 10 ¹⁵ Hz	Corrier Neu
Modulate - Factor	=	m _{FAN}	=	0.0125576004179347	zotransmitter
Bands UL - Amplitude	=	A _{BUL}	=	0.001574 x 10 ⁻¹ ° m	Antidote
Carrier - Power	=	P _{CA}	=	0.00003962 x 10 ^{-2°} Watt	Brain Neuzo
T. Modulated - Power	=	P _{TM}	=	0.00005943 x 10 ^{-2°} Watt	tronsmitter
SideBands - Power	=	P _{SB}	=	0.00001981 x 10 ^{-2°} Watt	tom, michel

The Demodulated FM - Waveform

Ropivacaine A Hopivacaine
(-) AEVS Spectrum

The Chemical Antidotes follow the Magnetic coupling for Cell Resonance, and for their own Wireless Energy Transmissions.

The Modulated -Transformer+Antidote →The Coupling Way in BRAIN-CELLS
In Electrical Systems the coils and transformers are closely related devices that utilize
the Principles of Electromagnetism. Coils , which are essentially loops of wire , are
fundamental components in Transformers. Transformers, in turn, use coils to transfer
Electrical Energy between the circuits , current i ,through the Magnetic fields typically
changing Voltage Levels V 1 , V 2 , where issues V 1 x i 1 = V 2 x i 2 , Altering the
Electric and Magnetic field enables the efficient Distribution of Electricity and for the [M]
and [AN] Waves Resonance , the Local= [LNS] and General = [GNS] , Nervous System



EM - WAVE Np LC - CIRCUIT Ns EM - WAVE

MODULATED & CANCERED EU-GISPLATIN = ANTIDOTE [M] + [AN] = [CNS] = 31,2 V [AN] = 55.[N2 Pt Cl2 H6] = 14,84 V \rightarrow MF = 1,56.10⁻⁶ T

MODULATED & G-ANESTHESIA KETAMINE = ANTIDOTE [M]+[AN] = [CNS] = 1143,4 V $[AN] = 27.[C13 \text{ HI6 Cl N O}] = 188,05 \text{ V} \rightarrow MF = 1,91.10^{-6} \text{ T}$

MODULATED & L-ANESTHESIA KETAMINE = COCAINEE [M]+[AN] = [CNS] = 1142,8 V

Some Explanations from , Article [111] , Regarding the Atoms-Bonding .

- The Resonance of 2 frequencies A, B occurs, when their Natural-frequencies coincide, i.e. it is valid A = B. In the Same Voltages and Magnetic -Field.
- 2... The two frequencies A, B, are coupled, when a Third frequency C is added so that A, B, are in Resonance, i.e. it is valid A + C = B + C. That is,
- 3... WHEN [A] is an carrier wave, [B] is the modulating wave, [M] = [A] + [B] is the modulated wave, [DM] is the demodulated wave, [AN] is the Antidote, [LNS] is the Local Nervous System, [CNS] is the Central Nervous System, THEN for the coupled frequencies it is valid → [M] + [AN] = [LNS] & also [M] + [AN] = [CNS] ← That is, The Antidotes, [AN] are those frequencies as the above [C] that are added so that [A], [B] are in Resonance with them to Voltage & M-Field
- 4...The Uncoupled values are inside of the Coupled Natural frequencies by small Amounts . The multitude of numbers of the uncoupled signaling Systems are placed to the Sidebands as this is the in Program → Athwart Energy Vibration Spectrum.
- 5... Placing ⇒ [M] = [A] + [B] → The Modulated Wave.

 [AN] = [C] → The Antidote,

 [M] + [AN] = [LNS] → IS in Resonance to Local Nervous System,

 [M] + [AN] = [CNS] → IS in Resonance to Central-Nervous System

THE TRANSPORTATION OF DRUGS TO THE CANCEROUS OR-NOT CELLS

Conclusion-1:

TATP - Explosive enters the Cell through,

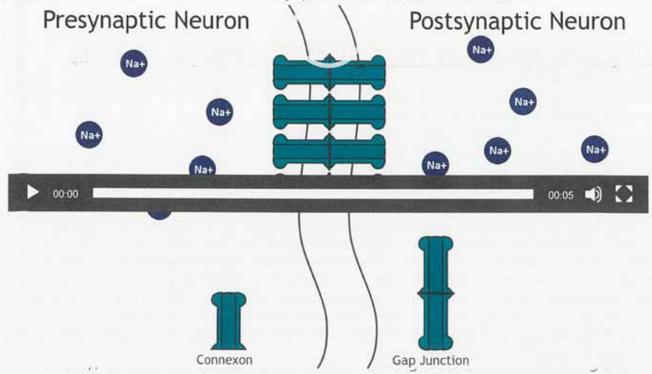
- 1...The Ascending motion of the Carriers Wave,
- 2... The Jumping on the Cells neurotransmitters, and their coupled from the miming to their common Modulated Wave. Coupling Resonance frequency tuning $[W_{TATP-F}] \cdot \sqrt{L.C} = 1$
- 3...The Combination of the Antidotes Resonance-frequency, to that of the Natural frequency of Nucleus tuning circuit ([W_{TATP-F}].√L.C) &TATP- tuning circuit ([W_{TATP-F}].√L.C)

 Conclusion-2:

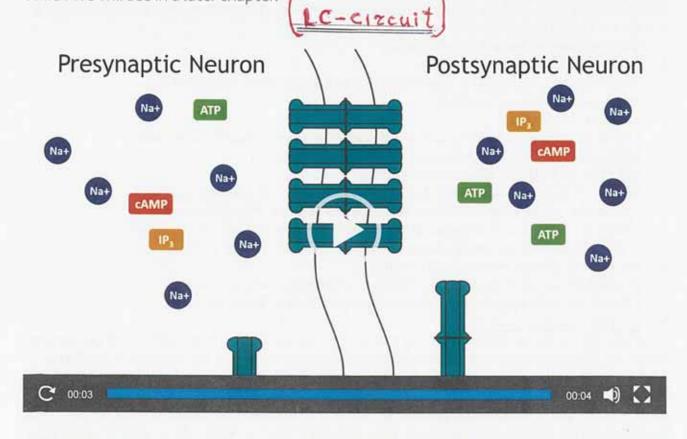
The Frequency coupling describes **the Interaction** between two or more oscillating frequencies, Carrier–Modulating-Antidotes Waves , where the behavior of one frequency is influenced by the Presence and characteristics of the other (The ProgramsAthwart Energy Vibrating Spectrum). This can manifest in various ways, including frequency mixing (creating new frequencies and Compounds = The Modulating Wave), Resonance (amplification when frequencies align), or more complex interactions like Cross-frequency Coupling = The Side Band (CFC) in Neural Systems. This interaction plays a role in neural computation, communication, and learning, Potentially linking as this in Local and in Global Brain activity.

The Cross-Frequency Coupling (CFC) \equiv From *Program's Athwart Energy Vibrating Spectrum* = CFC is a Phenomenon observed in Neural- Systems , where the Phase , φ , of a Low-frequency oscillation influences the Amplitude of a Higher-frequency oscillation . This interaction Play a role in Neural computation , communication , and learning , Potentially linking Local and Global Brain activity . For Signals issues the Voltage-current relation V_{Low} i $_{Low}$ cos. $\varphi = V_{HIGH}$ i $_{HIGH}$.cos. φ .

The Program's General Applications:


- 1... IN Radio and Telecommunications:
 - The Frequency mixing [The Prober Modulating on the Carrier Wav] is essential for radio transmission and Reception.
- 2... IN Neural Networks:
 - [CFC] is to understand how the different Brain regions communicate and process Information , [The Demodulation of an Modulated - Wave].
- 3... CONTROLLING The effectiveness of Drugs:
 - Markos Program is based on the Analysis of the Process and Antidote Action as ,

 → The Carrier Modulating Modulated Demodulation Waves Process ←


 [The Final Modulated Compound + Antidote's Frequency Resonates , to that

 Of the (Normal or Abnormal) (Local or Central) , Cell's Nervous System] . All Actions
 between the Drugs &those of the Cells happen between their own Resonant LC-circuits.
- 4... IN The Optical and microwave Resonators:
 - Coupled-mode theory analyzes the behavior of these Systems, and is in [The Demodulating from the Athwart Energy Vibrating Spectrum]
- 5... IN The Grid-tied converters:

Frequency coupling effects can occur in these Systems impacting their stability and performance. In essence, frequency-coupling is a broad concept which describes how the behavior of oscillating frequencies [Markos-Programming the Atoms and their Compounds Bonding] can be influenced by their interaction with each other, leading to various Phenomena and Applications across diverse fields. On the Cell's membrane Lipid bilayer, in order to generate a sufficient Voltage for the 1-Volt three-Phase grid, there must be at least a Direct Voltage of $V_{DC-min}=1$ V. $\sqrt{2}=1,4142$ V at the Input of the Head-Invertor [111]. All Interactions of Coupling is an Electrical-Resonator (a tuned circuit) storing Energy, and oscillating at the circuit's Resonant - frequency. In the case of Drugs, The storing Energy of, Antidotes LC-circuit \Rightarrow Drug, flows to the CELL's LC-circuit...

gap junctions. These signaling molecules play an important role in cellular mechanisms, which we will see in a later chapter.

Animation 8.3. Gap junctions are large enough to allow the flow of small cellular molecules like ATP or second messengers. 'Electrical Synapse - Small Molecules' by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International

License. View static image of animation.

= [C10 H16 N5 013 P3] C.AMP = [C10 H12 NS O6 P] [C6 HIS OIS P3]

What are neurotransmitters? The Synapse

Neurotransmitters are chemical messengers that your body can't function without. Their job is to carry chemical Signals ("messages) from one neuron (nerve cell) to the next target cell. The next target cell

can be another nerve cell, a muscle cell or a gland.

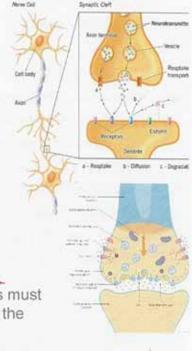
Your body has a vast network of nerves (your nervous system) that send and receive electrical Signals from nerve cells and their target cells all over your body. Your nervous System controls everything from your mind to your muscles, as well as organ functions. In other words, nerves are involved in everything you do, think and feel. Your nerve cells send and receive information from all body sources. This constant feedback is essential to your body's optimal function.

What happens to neurotransmitters after they deliver their

message? After neurotransmitters deliver their message, the molecules must be cleared from the synaptic cleft (the space between the nerve cell and the next target cell). They do this in one of three ways.

Neurotransmitters:

- Fade away (a process called diffusion).
- Are reabsorbed and reused by the nerve cell that released it (a process
- called reuptake).
- Are broken down by enzymes within the synapse so it can't be recognized
- or bind to the receptor cell (a process called degradation).


The Voltage Gate = Between Postsynaptic Neuron & Presynaptic Neuron Chemical Synapses rely on Neurotransmitters to bridge the synaptic Cleft, The Electromagnetic LC circuit of the Antidotes Actions], facilitating slower, unidirectional Signalling.

Integration of Synaptic inputs

Main article: Summation (neurophysiology)

In general, if an excitatory synapse is strong enough, Then

An Action - Potential in the Presynaptic- neuron will trigger an Action - Potential in the Postsynaptic cell. In many cases the excitatory Postsynaptic Potential (EPSP) will not reach the threshold for eliciting an action potential. When action Potentials from multiple Presynaptic Neurons fire simultaneously, or if a single Presynaptic Neuron fires at a high enough frequency, the EPSPs can overlap and summate. If enough EPSPs overlap, the summated EPSP can reach the threshold for initiating an action potential. This process is known as summation, and can serve as a high pass filter for neurons. On the other hand, a Presynaptic Neuron releasing an Inhibitory Neurotransmitter, such as GABA, can cause an inhibitory Postsynaptic- Potential (IPSP) in the Postsynaptic Neuron, bringing the membrane Potential farther away from the threshold, decreasing its excitability and making it more difficult for the neuron to initiate an action Potential. If an IPSP overlaps with an EPSP, the IPSP can in many cases prevent the neuron

presynaptic terminal

g. active zone

h. post synaptic

reserve receptors

post synaptic bouton

a. mitochondria

b. kinase c. synaptic vesicle

d. Ca²⁺ channe

f. endoplasmic reticulum

e, receptor

from firing an action Potential. In this way, the output of a neuron may depend on the input of many different neurons, each of which may have a different degree of influence, depending on the strength and type of synapse with that neuron. John Carew Eccles performed some of the important early experiments on synaptic integration, for which he received the Nobel Prize for Physiology or Medicine in 1963.and complexity in communication compared to electrical synapses.

THE CHEMICAL ELEMENTS IN SYNAPSES. Na3

Adenosine Triphosphate | C10 H16 N5 O13 P3 | CID 5957

ATP is an adenosine 5'-phosphate in which the 5'-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic ...

Adenosine cyclic phosphate | C10 H12 N5 O6 P | CID 6076

Molecular Formula. C10H12N5O6P; Synonyms. Cyclic AMP; cAMP; 60-92-4; Adenosine 3',5'-cyclic monophosphate; 3',5'-cyclic AMP; Molecular Weight. 329.21 g/mol.

Inositol trisphosphate = C₆ H₁₅ O₁₅ P₃.

Its empirical formula is C₆H₁₅O₁₅P₃. It is composed of an inositol ring with three phosphate groups bound at the 1, 4, and 5 carbon positions, and three ...

The Combination of the Antidotes Resonance-frequency, to that of the Natural frequency of Nucleus tuning circuit ($[W_{ANTI-G}]$. $\sqrt{L.C}$) & SYNAPSE- tuning circuit ($[W_{SYNAP}]$. $\sqrt{L.C}$) APPLICATIONS:

- 1...CISPLATIN ANTIDOTE = 240.[N2 Pt Cl2 F H6] occupies the Resonance Circular frequency [W_{AN-CIS} = 47,1513.10¹⁵ Hz , with Energy Q $_{\Pi}$ = 312,4245.10⁻¹⁹ J Joule , The Antidote LC-circuit-coupling LC = 4,49793.10⁻³⁴ HF = F / s , The circuit-current I $_{\Pi}$ = 1,4731221 Ampere , an Resonance-Voltage = 6,9459618 (m-Volt) , with Power P = 10, 232249 (m-Watt) , an Voltage across the Inductor is \rightarrow V $_{\Pi}$ = 0,919437. eV, an maximum flowing current i $_{\Omega}$ = 1,4731221 Ampere , Period T / 4 = 33,33837 .10⁻¹⁸ s , in Capacito-Tank C = 4,49793.10⁻¹⁵ Farad .
- 2...SYNAPSES ANTIDOTE 55.[ATP] = 55.[C10 H16 N5 O13 P3] occupies the Resonance Circular Frequency W [ATP] = $47,266.10^{15}$ Hz \equiv W [AN-CIS].
- 3...SYNAPSES ANTIDOTE 59.[c.AMP] = 59.[C10 H12 N5 O6 P] occupies the Resonance Circular Frequency W [c.AMP] = 47,151.10 15 Hz \equiv W [AN-CIS] .
- 4...SYNAPSES ANTIDOTE 137.[In.TRI] = 137.[C6 H15 O15 P3] occupies the Resonance Circular Frequency W [c.AMP] = 47,151.10¹⁵ Hz ≡ W [AN-CIS].
- 5...SYNAPSES ANTIDOTE 160.[In.TRI] = 160.[C6 H15 O15 P3] occupies the Resonance Circular Frequency W [c.AMP] = $50,792.10^{15}$ Hz >> W [AN-CIS] .
- **6...**SYNAPSES ANTIDOTE 160.[In.TRI] + 250.N = 160.[C6 H15 O15 P3] + 250.N occupies the **Resonance** Circular Frequency W [c.AMP] = 47,166.10¹⁵ Hz \equiv W [AN-CIS] . This Property of Synapses allows to Antidotes to be helped by other indivisual Atoms .

7...SYNAPSES = THE PHYSICAL EQUIVALENT OF MAGNETS.

The Animated diagram is showing the Operation of a tuned circuit (The LC circuit). The capacitor C stores Energy in its Electric field E and the inductor L stores Energy in its Magnetic field E (green). The animation shows the circuit at progressive points in the oscillation. The oscillations are slowed down; in an actual tuned circuit the charge may oscillate back and forth Thousands to Billions of times per second $Q = Q_0 \circ cos(\omega t)$ Intensity Current $I(t) = Q_0 \cup g_1(\omega t)$

Remarks:

- a).. EU-Cisplatin-3 Interacts, by Coupling its Electrical-Resonator which is a tuned circuit storing Energy, and oscillating at the Synapses-Cell'scircuit's Resonant frequency.
- b).. The storing energy of , Antidote's LC- circuit = Drug Cisplatin , flows to the Synapses Cell's LC-circuit , in a Period T / 4 = 33,33837 .10⁻¹⁸ s ,
- c).. This tank of energy is The circuit current I $_0$ = \rightarrow 1,4731221 Ampere which is charging the empty tank and after it discharging .
- d).. From Program is seen that all Cisplatin-Elements are FREE and can separately Act on the corresponding Synapses Cell's LC-circuit, In essence, frequency-coupling describes how the behavior of oscillating frequencies is influenced by their interaction with each other, and leading to various Phenomena and Applications across diverse and Spread fields as are the Isolated Atoms.

The Demodulating from the Athwart - Spread Energy Vibrating Spectrum]

- e).. The case of Drugs enters in the Grid-tied converters where , The storing Energy of ,
 Antidotes LC-circuit ⇒ Drug , flows to the CELL's LC circuit .
- f).. Generally , all Interactions at Resonance circular frequencies , W [1] \rightarrow W [2] \rightarrow W [n] follow the Grid-tied converters and in Program \rightarrow [*The Athwart Spread Energy Vibrating Spectrum*] , where the Energy = motion in LC Circuit (1) from its Resonance circular frequency W [1] , flows to \rightarrow W [2] circular frequency through LC Circuit(2) which occupy the same Voltage as [V 1 x i 1] cos (ϕ) = [V 2 x i 2] cos (ϕ) , where , ϕ , is the Phase of the two circular frequencies .
- g).. The continous Supply with the Drug Cisplatin Kills the cancerd Cells .

THE CHEMO MECHANICAL COUPLING :.

EU-Cisplatin-3 for Chemotherapy has the chemical Strructrure $\rightarrow 262$.[N₂ P_t O₃] The Modulated and Cancered Breast Resonance frequency was found as below, $W_{MO-D} = 47,0513.10^{15}$ Hz, while the Cisplatin's Drug Antidote was checked from Program and is $W_{AN-CIS} = 47,1513.10^{15}$ Hz. with Energy $Q_0 = h f = h \cdot \frac{W_{AN-CIS}}{2\pi} = 6,626.10^{-34}$ J.s $\left[\frac{47,1513.10^{15} \text{ Hz}}{2\pi}\right] = 312,4245.10^{-19}$ J s/s = Joule.

- 1...Drug Cisplatin-3 = The Antidote LC-circuit-coupling becomes from equation $LC = \left[\frac{1}{W_{AN-CIS}}\right]^2 \equiv \left[\frac{1}{47,0513,10^{15}}\right]^2 = 4,49793.10^{-34} \ HF = F \ / \ s$
- 2...From Energy conservation $I_0 = \sqrt{\frac{1}{LC}}$. $Q_0 = W_{AN-CIS}$. $Q_0 = 47,1513.10^{15} Hz$. $312,4245.10^{-19} J = 14731,221.10^{-4} Ampere = 1,4731221 Ampere$
- 3... Accepting inductance L = 1. 10^{-19} Hz then capacity, $C = \frac{1}{L} \cdot \left[\frac{1}{W_{BN-CTS}} \right]^2$ and equal to $C = \frac{1}{10^{-19}} \cdot 4,49793.10^{-34} = 4,49793.10^{-15}$ Farad

 Resonance-Voltage = $\frac{W_{ORk}}{C_{apacity}} = \frac{Q_0}{C} = \frac{312A245.10^{-19}}{4A9793.10^{-15}} = 69,459618.10^{-4}$ Volt = 69,459618. 10^{-4} Volt = 6,9459618 (m-Volt). The Power of the R-System is $P_{LE} = V_{Oltage}$. Ampere = V_{L} , $V_{Oltage} = 0.0232249$ Watt = 10, 232249 (m-Watt)
- 4... The Voltage across the Inductor is $\rightarrow V_L = L \cdot W_{AN-CIS} \cdot Q_0 \cdot \sin(\omega t + \phi)$, and max. $V_L = L \cdot [W_{AN-CIS} \cdot Q_0 = I_0] = L \cdot I_0 = 10^{-19} \text{ Hz} \cdot 1,4731221 \text{ Ampere} = 1,4731221.10^{-19} \text{Hz} \cdot A = 1,473122.10^{-19} /1,6022.10^{-19} \text{ e-Volts} = 0,919437. eV$
- 5... The maximum flowing current becomes from equal equation L i₀²/2 = i₀²/C where then , i₀ = $\sqrt{\frac{1}{Lc}}$.q₀= W_{AN-CIS}.q₀ = 47,15.10¹⁵ Hz.[312,4245.10⁻¹⁹J] = 14731,221 .10⁻⁴ Ampere = 1,4731221 A = Ampere
- 6...The Capacity becomes complete discharged at Period T / 4 \rightarrow 90 ° and is , T / 4 = $\frac{2\pi}{w} \left[\frac{1}{4}\right] = 0,0333837.10^{-15} = 33,33837.10^{-18}$ s
- 7...The Program can immediately Dedect and Represent the Resonated-Antidotes to Any Chemomechanical Coupling.

Conclusion:

EU-Cisplatin-3 Interacts, by Coupling its Electrical-Resonator which is a *tuned circuit* storing Energy, and oscillating at the Cell's circuit's resonant frequency. Thus the storing energy of, Antidote's LC-circuit = Drug Cisplatin, flows to the SYNAPSES Cell's LC-circuit. This tank of energy is \rightarrow 1,4731221 Ampere and charged Discharged in 33,33837.10⁻¹⁸ s.

A continous supply with the Drug Cisplatin Kills the cancerd Cells .

Compound APPLICATION-1 Description 8-1= NEW ANTICANCER Gisplatin = 240.[N2 Pt Cl2 F H6] Formula N480Pt240Cl480F240H1440 Total Number of Elements 2880 Stiffness Factor 1440

Properties

#	Number	Symbol	Mass	Total Mass	Pins	Sockets	Bonded	Unbonded
1	240	Pt	195	46800	240	240		
2	480	CI	35	16800	480	480	(
3	480	N	14	6720	1440	1440	17	1
1	240	F	19	4560	240	240	7	N)
5	1440	Н	1	1440	1440	1440	W	

Bond - Mode

240	480	144	240	144 =	384
Pt	CI	N ⁰	F	H ⁰ T	0
240	480	144 0	240	144 0	384 0

Matrices

Mass Matrix

m ×	46800	0	0	0	0
	0	16800	0	0	0
	0	0	6720	0	0
	0	0	0	4560	0
	0	0	0	0	1440

Stiffness Matrix

Flexibility Matrix

The Elements of CISPLATIN.

are free from their Between coupled. Resonance and thus.

create in Their LC-circuit. an Potential Vic=167,519.10-6 Volt.

in Magnetic Field=MF-1c=0,974.10-6 Tels of Power Pic=0,518159.10-4 Watt.

in Wavelength 2R=0,139.10-12 m

The Inbetween them Spread-Athwart

2nergy Vibration Coupled Spectrum is

WI-WZ = -2,755.1015 HZ

WI-W3 = -15,881.1015 HZ WI-W4=2,48.18

WI-W5 = -16,02.1015

W2-W3 = -13,13.1015

W2-W4 = 5,24.1015 HZ WZ-W5=-13,26.18

W3-W4 = 18,36,1015 W3-W5=-0,133.1015

W4-W5 = -18,497.1015 HZ

WA+W5 = 69,39.1015 HZ

WR+W2= 7204.1015 HZ

WR+W2= 7204.1015 HZ

WR+W3= 85,27.1015 HZ

WR+W4= 66,91.1015 HZ

WR+W4= 66,91.1015 HZ

WR+W4= 66,91.1015 HZ

0.70152 1.00605 $\Phi_5 =$ 1.00077638 1.00861

Modes Dynamic - Results

$\lambda_1 = 0.70206894 \text{ nm}$	$W_1 = 15.229211 \times 10^{15} Hz$	f ₁ = 2.423804 x 10 ¹⁵ Hz	E ₁ = 10.02387895 eV
		14 = 2.425004 X 10 112	E1 = 10.02367695 eV
$\lambda_2 = 1.00683446 \text{ nm}$	$W_2 = 17.984702 \times 10^{15} Hz$	$f_2 = 2.862354 \times 10^{15} Hz$	E ₂ = 11.83754535 eV
$\lambda_3 = 1.00939683 \text{ nm}$	W ₃ = 31.110854 x 10 ¹⁵ Hz	f ₃ = 4.951446 x 10 ¹⁵ Hz	E ₃ = 20.47718958 eV
$\lambda_4 = 1.00211013 \text{ nm}$	W ₄ = 12.747046 x 10 ¹⁵ Hz	f ₄ = 2.028755 x 10 ¹⁵ Hz	E ₄ = 8.39011604 eV
$\lambda_5 = 1.00077638 \text{ nm}$	W ₅ = 31.244557 x 10 ¹⁵ Hz	f ₅ = 4.972726 x 10 ¹⁵ Hz	E ₅ = 20.56519325 eV

THE STIFFNESS - FINAL ENERGY - WAVEFORM SIGNAL

From modes

Tommodes					
W ₁ = 15.229211 x 10 ¹⁵ Hz	U1 = 0.086	3798 x 10°	m/s	$\lambda_1 = 0.035811 \times 10^{-10} \text{ m}$	A ₁ = 0.005699 x 10 ⁻¹⁰ m
W ₂ = 17.984702 x 10 ¹⁵ Hz	U ₂ = 0.157	431 x 10°	m/s	$\lambda_2 = 0.055 \times 10^{-10} \text{ m}$	A ₂ = 0.008754 x 10 ⁻¹⁰ m
W _a = 31.110854 x 10 ¹⁵ Hz	Ua = 0.327	389 x 10°	m/s	$\lambda_a = 0.06612 \times 10^{-10} \text{ m}$	A _a = 0.010523 x 10 ⁻¹⁰ m
W ₄ = 12.747046 x 10 ¹⁵ Hz	U ₄ = 0.254	399 x 10 ⁵	m/s	$\lambda_4 = 0.125396 \times 10^{-10} \text{ m}$	A ₄ = 0.019957 x 10 ⁻¹⁰ m
W ₅ = 31.244557 x 10 ¹⁵ Hz	Us = 0.708	759 x 10 ⁵	m/s	$\lambda_5 = 0.142529 \times 10^{-10} \text{ m}$	A ₅ = 0.022684 x 10 ⁻¹⁰ m
Circular - Frequency	=	WR	=	54.158184 x 10 ¹⁵ Hz	7
Resonance - Energy	=	E_R	=	35.64696159237575 eV	
Resultant - Velocity	=	UR	=	1.19738 x 10 ^s m/s	The Ener
Resultant - λ	=	λ_{R}	=	0.138915 x 10 ⁻¹⁰ m	Vibration
Re Helical - r = AR	=	rR	=	0.0221089341 x 10 ⁻¹ ° m	CISPLATINE
Bands UL - Amplitude	=	ARB	=	0.011054 x 10 ⁻¹ ° m	
Resultant - Potential	=	V_{RP}	=	1142.2 x 10 ⁻² ° Volt	-Spectrum.
LC - Circuit Potential	=	V_{LC}	=	167.518915 x 10 ⁻⁶ Volt	Signals
Intensity - Current	=	Ic	=	3.09 x 10 ⁻¹ Ampere	
Vaporation -Temperature	e =	Τv	=	2,961.321 Kelvin	
Magnetic - Field	=	MF	=	0.974243 x 10 ⁻⁶ Tesla	
LC - Circuit - Power	=	PLC	=	518159.671798 x 10 ^{-1°} Watt	
T.Modulated - Power	=	P _{TRM}	=	1036319.343595 x 10 ⁻¹ ° Wat	
SideBands - Power	=	P _{SBM}	=	259079.835899 x 10 ⁻¹ ° Watt	

The Energy Vibration CISPLATINE Spectrum. Signals

= U₁/ φ σı Δ w₁ = W R - W1

Σ w₁ = W_R + W₁

fw₁ $= \Delta W_1/2\pi$

 $E dF_1 = h x fw_1$

k, = $\Delta W_1 / \Sigma W_1$

= W R / W1 β,

φ, = 1/W₁

Ρ, = 0,5 * A₁² = 0.053644 x 10⁵ N/mm²

= 38.928974 x 10¹⁵ Hz

= 69.387395 x 10¹⁵ Hz

= 6.195739 x 10¹⁵ Hz

= 25.62308264 eV

= 0.561038123

= 3.556204315

= 0.065663 x 10⁻¹⁵ Rad

0.0000 x 10^{-2°} Watt

min.Amplitude Modulation max.Amplitude Modulation con.Frequency Modulation

Comparison Results

The Initial Healthy [Carrier] Compound

BREAST>TOTAL= C4O6N2PH14]+[N2O3H5]+[NO4H5] >>CANCER =]C4O2H15]:

C4PN2N2NO6O4O3H14H5H5

W RI = 18.355632 x 1015 Hz E RI 12.081692436160115 eV f RI 2.921476 x 1015 Hz 17.422198 x 105 m/s U RI A RI 5.963668 x 10⁻¹⁰ m A RBI 0.086286 x 10⁻¹⁰ m V RI 387.14 x 10-20 Volt V SBI 13.2898616797761 Volt P RI 2317.340738 x 10-1° Watt P RMI 4634.681476 x 10-10 Watt P BRMI 1158.670369 x 10-1° Watt

The Initial (Carrier) Compound Energy-Spectrum.

Helical r RI = ARI = 0.9491472185 x 10⁻¹⁰ m

M-Field MFI = 1.037418 x 10⁻⁶ Tesla

Tvi = 562.011 Kelvin

Ici = 3.55 x 10⁻² Ampere

The Final Deseased [Modulated] Compound

CANNABINOID BREAST-CANCER =] C4 O2 H15] :C4O2H15

W RF = 3.985886 x 10¹⁵ Hz

E RF = 2.6235132773384597 eV

 \mathbf{f}_{RF} = 0.634392 x 10¹⁵ Hz

U RF = 3.310333 x 10⁵ m/s

 λ_{RF} = 5.218272 x 10⁻¹° m

A RBF = 0.276838 x 10⁻¹⁰ m

V RF = 84.067 x 10⁻²⁰ Volt

V sBF = 2.88586460507231 Volt

P RF = 1.118838 x 10⁻¹⁰ Watt

P RMF = 2.237677 x 10⁻¹° Watt

P BRMF = 0.559419 x 10⁻¹° Watt

Complementary

 W_{RC} = 28.73949352 x 10¹⁵ Hz

E RC = 18.9162021290803 eV

f_{max}-uB = 3.555868 x 10¹⁵ Hz

 $f_{min-UB} = -2.287084 \times 10^{15} Hz$

 β if = 3.60515772514668

m_{IF} = 0.999758565268125

ΔW RES = -10.383861 x 10¹⁵ Hz

V_{SBD} = -20.8079941494076 Volt

 $\Delta W_{BAN} = 0 \times 10^{15} Hz$

P_{TBW} = 1.37950649 x 10^{-2°} Watt

The Final (Modulating-Modulate Concert Compound. Energy Spectrum.

Helical r RF = ARF = 0.8305138446 x 10⁻¹⁰ m

M-Field MrF = 2.845454 x 10⁻⁶ Tesla

T_{VF} = 414.41 Kelvin

IcF = 1.68 x 10⁻³ Ampere

The Needed Antidote for Demodulation of the Modulated. Energy-Spectrum.

Ni = 11 NF = 3

M-Field

MFN = 3.616073 x 10⁻⁶ Tesla

 $Icc = -1.9889084 \times 10^{-13} Ampere$

The Healthy [Demodulated] Final Equilibrate

 $W \text{ RC} + W \text{ RI} = 47.09512602 \times 10^{15} \text{ Hz}$

E RC + E RI = 30.9978945652404 eV

The Resonance angular frequency needed for the oscillations in the Circuit.

106

Antidote - Action

The Antidote	8-1= NEW ANTICANCER Gisplatin = 240.[N2 Pt Cl2 F H6] : N480Pt240Cl480F240H1440	
Final Compound	CANNABINOID BREAST-CANCER =] C4 O2 H15]: C ₄ O ₂ H ₁₅	
Needed W	= 47.09512602 x 1015 Hz The needed Resonance	
Needed E	THE MEETING KESO NOW	
Circular - Frequency	= WRAN = 47.05995148 x 1015 Hz Oscillation in their	on
Resonance - Energy	= ERAN = 30.974898842829788 eV Circuits - LC.	۲,
Frequency - Antidote	= fant = 7.4900448 x 1015 Hz The Antidate's Res	
Resultant - Velocity	The Annaules Res	1000
Resultant - λ	- h = 0.4100074000 4040	100
Re Helical - r = ARANT	= rrant = 0.14993/1083 x 10-10 m the Oscillation in H	1
Modulated SB - Potential	= V _{SBF} = -6.06146 x 10 ⁻¹⁸ Volt	
LC - Circuit Potential	= VLC = 109.907161 x 10-6 Volt -> The Voltage occo	55-
Resultant - A - Potential	= VRAP = 31.3576868824553 Volt Cerporel tok.	
ntensity - Current	= 1c = 2.34 x 10-1 Ampere -> The current in	Ci.
Antidote V - Temperature	= TvA = 4.464 Kelvin → The Temperatures	120000
Modulated M-Field	= M _{FMOD} = 3.616073 x 10 ⁻⁶ Tesla	4
Antidote - M-Field	= M _{FANT} = 0.913754 x 10 ⁻⁶ Tesla	
Antidote - Phase - Shift	$=$ ϕ_{ANT} = 0.021249 x 10 ⁻¹⁵ Rad	
Phase - Modul. Index	$=$ $\beta_{MANT} = 0.926400721505318$	
Bands UL - Deviation	= ΔWRES = 43.0740657403 x 10 ¹⁵ Hz	
Bands UL - Width	= P _{BRM} = 1.49800896 x 10 ¹⁵ Hz	
Modulate - Factor	$=$ m_{FAN} = 0.389300400507291	
Bands UL - Amplitude	= A _{BUL} = 0.004773 x 10 ⁻¹ ° m	
_C - Circuit - Potential	= PLC = 256685.006666 x 10-10 Watt The Potential in C	25 1
Γ. Modulated - Power	= P _{TM} = 513370.013332 x 10 ⁻¹ ° Watt	
SideBands - Power	= P _{SB} = 128342.503333 x 10 ⁻¹ ° Watt	
he Demodulated FM - Wav	eform 51 55 55 55 55 55 55 55 55 55 55 55 55	
7 7		
7 7 2	1	1
6 11 14	III I IN IN I VE	
11 by 37	3 B 82 A A A A A A A A A A A A A A A A A A	
	4 2 2 4 4	
3 3 3	3 3 3 3 3	
Anticancer G	is platen Anticancer Esplatin	
(-) AEVS Spe		