http://www.gphjournal.org/index.php/m/issue/feed GPH - International Journal of Mathematics 2022-10-16T08:26:32+00:00 Dr. EKEKE, JOHN NDUBUEZE drekekejohn@gmail.com Open Journal Systems <p style="font-family: Helvetica;"><span style="color: #222222;"><span style="font-family: 'Book Antiqua', serif;"><span style="helvetica: Arial, serif;"><span style="font-size: medium; font-family: 'Book Antiqua', serif;"><span style="color: #000000;">The</span></span></span><strong><span style="helvetica: Arial, serif;"><span style="font-size: medium; font-family: 'Book Antiqua', serif;"><span style="color: #000000;"> GPH-INTERNATIONAL JOURNAL OF MATHEMATICS (E-ISSN 2795-3278 P-ISSN 2795-3274) </span></span></span></strong><span style="helvetica: Arial, serif;"><span style="font-size: medium; font-family: 'Book Antiqua', serif;"><span style="color: #000000;">is an open-access journal that publishes research articles, reviews, case studies, guest-edited thematic issues, and short communications/letters in all areas of mathematics, applied mathematics, applied commutative algebra, and algebraic geometry, mathematical biology, physics and engineering, theoretical bioinformatics, experimental mathematics, etc</span></span></span></span></span>.<span style="font-size: medium;"> <a title="Journal Impact Factor" href="http://www.gphjournal.org/index.php/index/jif"><span style="color: #222222;"><span style="font-family: 'Book Antiqua', serif;"><span style="helvetica: Arial, serif;"><span style="color: #000000;"><span style="font-size: 1.5em;"><strong><span style="text-shadow: #FF0000 0px 0px 2px;">Impact Factor: 1.114</span></strong></span></span></span></span></span></a></span></p> http://www.gphjournal.org/index.php/m/article/view/716 Computational Conformal Geometry: A Review 2022-10-16T08:26:32+00:00 Sabia Akter Bhuiyan aktersabia@yahoo.com <p>Conformal geometry is considered as a fundamental topic in pure mathematics including complex analysis, algebraic geometry, Riemann surface theory, differential geometry and algebraic topology. Computational conformal geometry has an important role in digital geometry processing. A good number of practical algorithms are presented to compute conformal mapping, which has been broadly applied in a lot of practical fields such as computer graphics, wireless sensor networks, medical imaging, visualization, and so on. &nbsp;This work reviews some major concepts and theorems of conformal geometry , their computational methods and the applications for surface parameterization.</p> 2022-10-16T08:01:25+00:00 ##submission.copyrightStatement##